MHB Comparing Matrices: A-B>0 Positive Definite?

  • Thread starter Thread starter matqkks
  • Start date Start date
  • Tags Tags
    Matrices
matqkks
Messages
280
Reaction score
5
Can we compare matrices?
If A-B>0 is positive definite, can we say A>B?
 
Physics news on Phys.org
matqkks said:
Can we compare matrices? If A-B>0 is positive definite, can we say A>B?

If you mean $A>B\Leftrightarrow a_{ij}>b_{ij}$ for all $i,j$, that is not true. Choose for example $A=\begin{bmatrix}{\;\;1}&{-1}\\{-1}&{\;\;2}\end{bmatrix}$ and $B=\begin{bmatrix}{0}&{0}\\{0}&{0}\end{bmatrix}$.

Edit: Or perhaps you take as a definition $A>B$ if and only if $A-B$ is positive definitite and you want to study the properties of $(\mathbb{R}^{n\times n},>)$. Could you specify?
 
Last edited:
I meant A-B is positive definite.
Don't not mean your first definition.
K
 
matqkks said:
I meant A-B is positive definite. Don't not mean your first definition.

I know that you meant $A-B$ definite positive, but the problem is that I don't understand the exact meaning of your question.

$(a)$ If you define $A>B$ iff $a_{ij}>b_{ij}$ then, it is false that $A-B$ positive definite iff $A>B$.

$(b)$ If you define $A>B$ iff $A-B$ is definite positive, of course the definition has sense. You get a relation on $\mathbb{R}^{n\times n}$ i.e. a subset of $\mathbb{R}^{n\times n}\times \mathbb{R}^{n\times n}$.
 
You'd probably want to check transitivity. So, let's say that $A>B$ and $B>C$. Then, by your definition, you'd have that $A-B$ and $B-C$ are both positive definite. From this, can you prove that $A-C$ is positive definite? That would imply that $A>C$, which is what you need for transitivity.

So let's see. By the definition of positive definite, it must be that $\forall z\in\mathbb{R}^{n},$ $z^{T}(A-B)z>0$, and $z^{T}(B-C)z>0$. Adding positives to positives yields that
$$z^{T}(A-B)z+z^{T}(B-C)z>0,$$
and hence
$$z^{T}[(A-B)z+(B-C)z]=z^{T}[A-B+B-C]z=z^{T}[A-C]z>0,$$
as required. Therefore, $A-C$ is positive definite, so $A>C$; you have transitivity, unless I made a mistake somewhere.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top