MHB Comparison between two power of numbers

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove that $8^{91}\gt 7^{92}$.
 
Mathematics news on Phys.org
anemone said:
Prove that $8^{91}\gt 7^{92}$.

$8^{91} = 7^{91} * ( 1 + \frac{1}{7})^{91}$
$> 7^{91} * ( 1 + \frac{91}{7})$ using for n integer > 1 $(1+x)^n > 1 + nx$ as other terms are positive
$> 7^{91} * 14 > 2* 7^{92} > 7^{92}$
 
kaliprasad said:
$8^{91} = 7^{91} * ( 1 + \frac{1}{7})^{91}$
$> 7^{91} * ( 1 + \frac{91}{7})$ using for n integer > 1 $(1+x)^n > 1 + nx$ as other terms are positive
$> 7^{91} * 14 > 2* 7^{92} > 7^{92}$

Very well done, kaliprasad!(Cool)

There is another way to crack the problem, I welcome others to take a stab at it! (Sun)
 
kaliprasad said:
$8^{91} = 7^{91} * ( 1 + \frac{1}{7})^{91}$
$> 7^{91} * ( 1 + \frac{91}{7})$ using for n integer > 1 $(1+x)^n > 1 + nx$ as other terms are positive
$> 7^{91} * 14 > 2* 7^{92} > 7^{92}$
it should be:
$8^{91} = 7^{91} * ( 1 + \frac{1}{7})^{91}$
$> 7^{91} * ( 1 + \frac{91}{7})$ using for n integer > 1 $(1+x)^n > 1 + nx$ as other terms are positive
$= 7^{91} * 14 = 2* 7^{92} > 7^{92}$
my solution :using binomial expansion :
$8^{91}=(7+1)^{91}>7^{91}+91(7^{90})=7^{90}(7+91)=7^{90}(7\times7\times 2)=2\times 7^{92}>7^{92}$
 
Last edited:
Good job, Albert! (Cool)
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Back
Top