Comparison between two power of numbers

Click For Summary
SUMMARY

The discussion centers on proving the inequality \(8^{91} > 7^{92}\). Participants highlight different approaches to the proof, including the use of binomial expansion. The conversation emphasizes the effectiveness of mathematical reasoning and encourages collaborative problem-solving among users.

PREREQUISITES
  • Understanding of exponential functions and inequalities
  • Familiarity with binomial expansion techniques
  • Basic knowledge of mathematical proofs
  • Experience with algebraic manipulation
NEXT STEPS
  • Research the properties of exponential growth and decay
  • Study binomial expansion in depth
  • Explore advanced techniques in mathematical proofs
  • Learn about inequalities and their applications in mathematics
USEFUL FOR

Mathematics students, educators, and anyone interested in advanced algebraic concepts and proof techniques.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove that $8^{91}\gt 7^{92}$.
 
Mathematics news on Phys.org
anemone said:
Prove that $8^{91}\gt 7^{92}$.

$8^{91} = 7^{91} * ( 1 + \frac{1}{7})^{91}$
$> 7^{91} * ( 1 + \frac{91}{7})$ using for n integer > 1 $(1+x)^n > 1 + nx$ as other terms are positive
$> 7^{91} * 14 > 2* 7^{92} > 7^{92}$
 
kaliprasad said:
$8^{91} = 7^{91} * ( 1 + \frac{1}{7})^{91}$
$> 7^{91} * ( 1 + \frac{91}{7})$ using for n integer > 1 $(1+x)^n > 1 + nx$ as other terms are positive
$> 7^{91} * 14 > 2* 7^{92} > 7^{92}$

Very well done, kaliprasad!(Cool)

There is another way to crack the problem, I welcome others to take a stab at it! (Sun)
 
kaliprasad said:
$8^{91} = 7^{91} * ( 1 + \frac{1}{7})^{91}$
$> 7^{91} * ( 1 + \frac{91}{7})$ using for n integer > 1 $(1+x)^n > 1 + nx$ as other terms are positive
$> 7^{91} * 14 > 2* 7^{92} > 7^{92}$
it should be:
$8^{91} = 7^{91} * ( 1 + \frac{1}{7})^{91}$
$> 7^{91} * ( 1 + \frac{91}{7})$ using for n integer > 1 $(1+x)^n > 1 + nx$ as other terms are positive
$= 7^{91} * 14 = 2* 7^{92} > 7^{92}$
my solution :using binomial expansion :
$8^{91}=(7+1)^{91}>7^{91}+91(7^{90})=7^{90}(7+91)=7^{90}(7\times7\times 2)=2\times 7^{92}>7^{92}$
 
Last edited:
Good job, Albert! (Cool)
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
722
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 53 ·
2
Replies
53
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K