Comparison between x²+y²+z² and 1/x²+1/y²+1/z²

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Comparison
Click For Summary
SUMMARY

The discussion centers on the inequality involving positive real numbers \(x\), \(y\), and \(z\) constrained by the condition \(x+y+z=3\). It establishes that \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2} \geq x^2+y^2+z^2\). The proof relies on algebraic manipulation and properties of inequalities, confirming that the inequality holds true under the given conditions.

PREREQUISITES
  • Understanding of algebraic inequalities
  • Familiarity with the Cauchy-Schwarz inequality
  • Basic knowledge of real analysis
  • Ability to manipulate algebraic expressions
NEXT STEPS
  • Study the Cauchy-Schwarz inequality in detail
  • Explore other inequalities such as AM-GM and Jensen's inequality
  • Learn about symmetric sums and their properties
  • Investigate applications of inequalities in optimization problems
USEFUL FOR

Mathematicians, students studying real analysis, and anyone interested in algebraic inequalities and their proofs.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $x,\,y,\,z$ be positive real numbers such that $x+y+z=3$.

Prove that $\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\ge x^2+y^2+z^2$.
 
Mathematics news on Phys.org
anemone said:
Let $x,\,y,\,z$ be positive real numbers such that $x+y+z=3---(1)$.

Prove that $\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\ge x^2+y^2+z^2$.
my solution:
using Largrange multipliers :
let :$f(x,y,z,\lambda)=(\dfrac {1}{x^2}-x^2)+(\dfrac {1}{y^2}-y^2)+(\dfrac {1}{z^2}-z^2)+\lambda (x+y+z-3)$
we have:$\lambda=2x+\dfrac {2}{x^3}=2y+\dfrac {2}{y^3}=2z+\dfrac {2}{z^3}=4 ,\,\,\,for \,\,(x=y=z, \,\, and \,\,x+y+z=3)$
check another point $f(x,y,z,4)=f(1,\dfrac {4}{3},\dfrac {2}{3},4)=\dfrac {85}{144}>0=f(1,1,1,4)$
$\therefore (\dfrac {1}{x^2}-x^2)+(\dfrac {1}{y^2}-y^2)+(\dfrac {1}{z^2}-z^2)+4(x+y+z-3)\geq 0$
that is:$(\dfrac {1}{x^2}-x^2)+\dfrac {1}{y^2}-y^2)+(\dfrac {1}{z^2}-z^2)\geq 0$
and the proof is done
 
Albert said:
my solution:
using Largrange multipliers :
let :$f(x,y,z,\lambda)=(\dfrac {1}{x^2}-x^2)+(\dfrac {1}{y^2}-y^2)+(\dfrac {1}{z^2}-z^2)+\lambda (x+y+z-3)$
we have:$\lambda=2x+\dfrac {2}{x^3}=2y+\dfrac {2}{y^3}=2z+\dfrac {2}{z^3}=4 ,\,\,\,for \,\,(x=y=z, \,\, and \,\,x+y+z=3)$
check another point $f(x,y,z,4)=f(1,\dfrac {4}{3},\dfrac {2}{3},4)=\dfrac {85}{144}>0=f(1,1,1,4)$
$\therefore (\dfrac {1}{x^2}-x^2)+(\dfrac {1}{y^2}-y^2)+(\dfrac {1}{z^2}-z^2)+4(x+y+z-3)\geq 0$
that is:$(\dfrac {1}{x^2}-x^2)+\dfrac {1}{y^2}-y^2)+(\dfrac {1}{z^2}-z^2)\geq 0$
and the proof is done

Albert,

You combination of the two given functions into a single objective function is very useful. At this point, you could simply appeal to cyclic symmetry to claim the extrema has to occur for $x=y=z=1$ and alleviate the need for any differentiation.

I realize it is all too easy to come along after the fact and critique the work of others, and I don't mean this as a criticism, but rather as an observation. This observation notwithstanding, your approach is elegant and to be praised. :)
 

Similar threads

Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
4
Views
2K
Replies
1
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K