Complementary & Supplementary Angles

  • Context: MHB 
  • Thread starter Thread starter bernardl
  • Start date Start date
  • Tags Tags
    Angles
Click For Summary
SUMMARY

The discussion focuses on solving problems involving complementary and supplementary angles. Specifically, it addresses the equations for angles P and Q, where m

PREREQUISITES

  • Understanding of supplementary angles and their properties
  • Knowledge of complementary angles and their definitions
  • Ability to solve linear equations
  • Familiarity with algebraic expressions and substitutions
NEXT STEPS
  • Practice solving problems involving supplementary angles
  • Explore complementary angles through various examples
  • Learn to set up and solve linear equations in geometry
  • Investigate real-world applications of angle relationships
USEFUL FOR

Students studying geometry, educators teaching angle relationships, and anyone looking to improve their problem-solving skills in mathematics.

bernardl
Messages
4
Reaction score
0
The m<P is three less than twice the measure of <Q. If <P and <Q are supplementary angles, find the measures of both angles.
The m<B is two more than three times the measure of <C. If <B and <C are complementary angles, find the measures of both angles.
 
Mathematics news on Phys.org
Hello! :D

We ask that our users show their progress (work thus far or thoughts on how to begin) when posting questions. This way our helpers can see where you are stuck or may be going astray and will be able to post the best help possible without potentially making a suggestion which you have already tried, which would waste your time and that of the helper.

Can you post what you have done so far?
 
I honestly don't know how to do both of those questions!
 
O.k., let's try the first one. mP + mQ = 180 degrees. mP = 2mQ - 3. Make sense? Can you solve it now?
 
"The m<P is three less than twice the measure of <Q. If <P and <Q are supplementary angles, find the measures of both angles."
Do you know that "supplementary angles" means their measures sum to 180 degrees? m<P+ m<Q= 180. You are also told that m<P= 2m<Q- 3 so (2m<Q- 3)+ m<Q= 3m<Q- 3= 180. Solve that for m<Q then use m<P+ m<Q= 180 to find m<P "The m<B is two more than three times the measure of <C. If <B and <C are complementary angles, find the measures of both angles."

"Complementary angles" are angles whose measures add to 90 degrees. So m<B+ m<C= 90.
"m<B is two more than three times the measure of <C" means that m<B= 3m<C+ 2.
So m<B+ m<C= (3m<C+ 2)+ m<C= 4m<C+ 2= 90. Solve that for m<C then use m<B+ m<C= 90 to find m<B.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
1
Views
2K