Complex analysis - evaluate integral

Click For Summary
SUMMARY

The integral $\displaystyle \int_0^{2\pi} \frac{1}{(2 + \cos \theta)^2} \mathrm{d} \theta$ can be evaluated using complex analysis techniques, specifically residue calculus. The transformation $z=e^{i\theta}$ simplifies the integral to $\displaystyle -16\ i\ \int_{C} \frac {z}{z^{4}+8 z^{3} + 18 z^{2} +8 z +1}\ dz$, where $C$ is the unit circle. The poles of the integrand are located at $z_{1}= -2 -\sqrt{3}$ and $z_{2}= -2+\sqrt{3}$, with only $z_{2}$ lying within the unit circle. The final result can be derived using the Cauchy integral theorem, leading to the conclusion that the integral evaluates to $\frac{2\pi}{\sqrt{3}}$.

PREREQUISITES
  • Complex analysis fundamentals
  • Residue calculus
  • Understanding of contour integration
  • Familiarity with Taylor and Laurent series
NEXT STEPS
  • Study the application of the Cauchy integral theorem in complex analysis
  • Learn about residue calculus and its use in evaluating integrals
  • Explore the derivation of integrals using Taylor and Laurent series
  • Investigate the properties of complex functions and their poles
USEFUL FOR

Students and professionals in mathematics, particularly those studying complex analysis, as well as anyone interested in advanced techniques for evaluating integrals.

matteoit81
Messages
2
Reaction score
0
Hi all,

I need to evaluate this integral

anybody could point me to a solution?
I've tried to look around (google, books), but I found no clue to solve it

I wrote it in latex

$\displaystyle \int_0^{2\pi} \! \frac{1}{(2 + \cos \theta)^2} \mathrm{d} \theta$

Thanks for the help,
matteo
 
Last edited by a moderator:
Physics news on Phys.org
matteoit81 said:
Hi all,

I need to evaluate this integral

anybody could point me to a solution?
I've tried to look around (google, books), but I found no clue to solve it

I wrote it in latex

$\displaystyle \int_0^{2\pi} \! \frac{1}{(2 + \cos \theta)^2} \mathrm{d} \theta$

Thanks for the help,
matteo

http://www.wolframalpha.com/input/?i=integral[1/(2+Cos[x])]

Click Show Steps.
 
Thank for the fast rea\ply. I didn't know about mathematica website, very useful! :-)

There is just one "problem"

I read the solution of the integral and it is complete but way too complicated...
this one is a typical proposed exercise of complex analysis course and I don't think we are supposed to evaluate it in this way

the course topics are related to taylor/laurent series or residue calculus

is there any easier way to compute the defined integral?
 
Prove It said:
http://www.wolframalpha.com/input/?i=integral[1%2F(2%2BCos[x])]

Click Show Steps.

unfortunately that is not the integral asked for. It will offer up a steps for the correct integral, but the OPs objection is at least as valid for that.

CB
 
matteoit81 said:
Thank for the fast rea\ply. I didn't know about mathematica website, very useful! :-)

There is just one "problem"

I read the solution of the integral and it is complete but way too complicated...
this one is a typical proposed exercise of complex analysis course and I don't think we are supposed to evaluate it in this way

the course topics are related to taylor/laurent series or residue calculus

is there any easier way to compute the defined integral?

... and there is one more minor problem: the integral to be computed is...

$\displaystyle \int_{0}^{2 \pi} \frac{d\ \theta}{(2+\cos \theta)^{2}}$ (1)

... where the denominator is squared and not $\displaystyle \int_{0}^{2 \pi} \frac{d\ \theta}{2+\cos \theta}$!...

The standard procedure to compute an integral like (1) using complex analysis is to set $\displaystyle z=e^{i\ \theta} \implies \cos \theta= \frac{z+z^{-1}}{2}\ ,\ d \theta= -i\ \frac{d z}{z}$, so that the integral becomes...

$\displaystyle \int_{0}^{2 \pi} \frac{d\ \theta}{(2+\cos \theta)^{2}}= -16\ i\ \int_{C} \frac {z}{z^{4}+8 z^{3} + 18 z^{2} +8 z +1}\ dz$ (2)

... where C is the unit circle [a circle centered in z=0 and with radious 1...]. The f(z) in (2) has a pair of poles with multiplicity 2 in $\displaystyle z_{1}= -2 -\sqrt{3}$ and $z_{2}= -2+\sqrt{3}$ and only the last is inside the unit circle. Applying the Cauchy integral theorem the (2) is $\displaystyle I= 2\ \pi\ i\ r_{1}$ where...

$\displaystyle r_{1}= \lim_{z \rightarrow z_{2}}\frac{d}{dz}\ \{ f(z)\ (z-z_{2})^{2} \}= -16\ i\ \lim_{z \rightarrow z_{2}} \frac{d}{dz} \frac{z}{(z+2+\sqrt{3})^{2}}$ (3)

The details of computation are tedious but not too difficult and are left to 'Matteo'...

Kind regards

$\chi$ $\sigma$
 
Two words: 'magic differentiation'. Define:

$ \begin{aligned}I(\lambda) & :=\int_{0}^{2\pi}\frac{1}{\lambda+a\cos{x}}\;{dx} \\& =\int_{0}^{2\pi}\frac{1}{\lambda\left(\sin^{2} \frac{1}{2}x+\cos^{2} \frac{1}{2}x\right)+a\left(\cos^{2} \frac{1}{2}x-\sin^{2}\frac{1}{2}x\right)}\;{dx}\\& =\int_{0}^{2\pi}\frac{1}{( \lambda-a)\sin^{2}\frac{1}{2}x+(\lambda+a)\cos^{2} \frac{1}{2} x}\;{dx}\\& =\int_{0}^{2\pi}\frac{\sec^{2}{\frac{1}{2}x}}{( \lambda+a)+( \lambda-a)\tan^{2}\frac{1}{2}x}\;{dx}\\& = 4\int_{0}^{\infty}\frac{1}{( \lambda+a)+(\lambda-a)t^{2}}\;{dt}\\& = 4\int_{0}^{\infty}\frac{1}{(\sqrt{\lambda+a})^{2}+(\sqrt{\lambda-a})^{2}t^{2}}\;{dt}\\& =\frac{4}{{\sqrt{\lambda^{2}-a^{2}}}}\tan^{-1}\bigg(\frac{\sqrt{\lambda-a}}{\sqrt{\lambda+a}}~t\bigg)\bigg|_{0}^{\infty}\\& =\frac{2\pi}{\sqrt{\lambda^{2}-a^{2}}}.\end{aligned} $

But $\displaystyle I'(\lambda) =-\int_{0}^{2\pi}\frac{1}{(\lambda+a\cos{x})^{2}}\;{dx} $, thus:

$ \displaystyle \int_{0}^{2\pi}\frac{1}{(\lambda+a\cos{x})^{2}}\;{dx}=\frac{2\lambda\pi}{\sqrt{(\lambda^{2}-a^{2})^{3}}}. $
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 29 ·
Replies
29
Views
5K
  • · Replies 21 ·
Replies
21
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K