Complex Numbers and Vector Multiplication

Click For Summary
The product of two complex numbers remains a complex number, but vector multiplication differs significantly. While complex numbers can represent vectors, the dot product results in a scalar and the cross product yields a pseudovector, not a vector. These products are defined differently due to the nature of vector spaces and their symmetries. The dot product is an inner product applicable to any two vectors, while the cross product relates to the dual of a wedge product. Understanding these distinctions and concepts like vector spaces and wedge products is crucial for clarity in this area.
iampaul
Messages
93
Reaction score
0
I have read from my algebra book that the product of two complex numbers is still a complex number: (a+bi)(c+di)= (ac-db)+(bc +ad)i
I was thinking that since complex numbers can be used to represent vectors, the product of two vectors should still be a vector. But I have also read from my physics book that there are two ways to multiply vectors, which are the dot product and the cross product.The dot product is the product of two parallel vectors and results into a scalar, while the cross product is the product of two perpendicular vectors. Why should these products be defined differently? Using complex no.s, two vectors whether parallel or not should still yield a product which is still a vector. Are these dot and cross products different from ordinary complex number multiplication? If so, when do we use the ordinary complex no. or vector multiplication? Am i missing anything? What math topics should i read? Please reply, I'm really getting confused.

Any help will be greatly appreciated!
 
Physics news on Phys.org
hi iampaul! :smile:
iampaul said:
I have read from my algebra book that the product of two complex numbers is still a complex number: (a+bi)(c+di)= (ac-db)+(bc +ad)i
I was thinking that since complex numbers can be used to represent vectors, the product of two vectors should still be a vector.

vectors exist in a vector space

a vector space is defined as having addition of vectors, and multiplication of a vector by a by a scalar (to make a vector)

we can also define an inner product (essentially, combining two vectors to make a scalar), a wedge product (essentially, combining two vectors to make a "2-form", which is something like a tensor), and a dual (eg in 3D, the dual of a vector is the 2-form "perpendicular" to it)

we cannot define a combination of two vectors to make another vector (other than addition, of course) unless we abandon the symmetries of the space

for example, in your 2D case, we could define a "complex vector product" to be the result of multiplying the corresponding complex numbers …

but then y times y would be -x (because i times i = -1), but x times x would be x

this is unsymmetric: rotating the whole space 90° should leave everything looking the same, but it makes your very simple "complex vector product" look completely different! :smile:
But I have also read from my physics book that there are two ways to multiply vectors, which are the dot product and the cross product.The dot product is the product of two parallel vectors and results into a scalar, while the cross product is the product of two perpendicular vectors.

No, the dot product is a product of any two vectors (and results in a scalar), while the https://www.physicsforums.com/library.php?do=view_item&itemid=85" is the product of any two vectors, and results in a pseudovector (which teachers usually wrongly tell you is another vector, since after all it does look exactly like one :rolleyes:).

The dot product is an inner product. The cross product is the dual of a wedge product.
What math topics should i read?

google "vector space" and "wedge product" :wink:
 
Last edited by a moderator:
The book claims the answer is that all the magnitudes are the same because "the gravitational force on the penguin is the same". I'm having trouble understanding this. I thought the buoyant force was equal to the weight of the fluid displaced. Weight depends on mass which depends on density. Therefore, due to the differing densities the buoyant force will be different in each case? Is this incorrect?

Similar threads

Replies
26
Views
2K
  • · Replies 14 ·
Replies
14
Views
4K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 15 ·
Replies
15
Views
1K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 13 ·
Replies
13
Views
5K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 7 ·
Replies
7
Views
3K