How Do You Calculate the Coefficients and Convergence of a Complex Power Series?

Click For Summary
The discussion centers on calculating coefficients and convergence for a complex power series defined as f(z) = ∑a_j.z^j. The user attempts to find the power series expansion for the derivative f' and its square, noting that convergence is only definitively established at z = 0 due to unknown coefficients a_j. Suggestions are made to apply the ratio test for better convergence analysis and to collect terms when calculating f^2. The user also seeks clarification on their calculations and the application of complex analysis principles, indicating uncertainty about their approach. Overall, the thread emphasizes the importance of understanding convergence and coefficient relationships in complex power series.
Pyroadept
Messages
82
Reaction score
0

Homework Statement


Suppose that f(z) = ∑a_j.z^j for all complex z, the sum goes from j=0 to infinity.

(a) Find the power series expansion for f'
(b) Where does it converge?
(c) Find the power series expansion for f^2
(d) Where does it converge?
(e) Suppose that f'(x)^2 + f(x)^2 = 1, f(0) = 0, f'(0) = 1

Find a_0, a_1, a_2, a_3, a_4, a_5


Homework Equations





The Attempt at a Solution



Hi everyone, here's my attempt. I'm not sure if it's right though, so I would really appreciate it if you could please take a look at it:


(a) f'(z) = ∑j.a_j.z^(j-1), sum from 0 to infinity

= ∑j.a_j.z^(j-1), sum from 1 to infinity

= ∑(j+1).a_(j+1).z^j, sum from 0 to infinity

(b) We don't what the values of a_j are, so we can only say with definity that it converges for z = 0

(c) f^2 = (a_0)^2 + (a_0.a_1)z + (a_0.a_2)z^2 + ...
+ (a_1.a_0)z + (a_1.a_1)z^2 + ... etc.

(d) Again, we can only say it converges for definite where z = 0.

(e) f(0) = 0
i.e.
a_0 + a_1(0) + a_2(0) +... = 0

i.e. a_0 = 0

f'(0) = 1
i.e.
a_1 + 2.a_2.z + 3.a_3.z^2 +... = 1

The fact it is equal to 1 means it converges, but, as above, this can only happen if z = 0
i.e. a_1 = 1


Calculate f'(x)^2 = 1 + z(4.a_2) + z^2(6.a_3 + 4.a_2.a_2) + ...

and f(x)^2 = z^2(a_1.a_1) + z^3(2.a_1.a_2) + ...

The coefficients of the z terms in f'(x)^2 must be equal to minus the coefficients of the corresponding z terms in f(x)^2.

So we find that:

a_2 = 0
a_3 = -1/6
a_4 = 0
a_5 = 1/120

---
Regarding the convergence in (b) and (d), am I correct in what I say, in that there is no way of knowing what the a_j's are, so the only way we can know the series converge is when z = 0?

Also, have I multiplied the series correctly?

I'm sure I must have done something wrong, as it's a question from a past paper in my complex analysis class, but I don't seem to have used any complex analysis here...


Thanks for any help!
 
Physics news on Phys.org
Pyroadept said:
Hi everyone, here's my attempt. I'm not sure if it's right though, so I would really appreciate it if you could please take a look at it:


(a) f'(z) = ∑j.a_j.z^(j-1), sum from 0 to infinity

= ∑j.a_j.z^(j-1), sum from 1 to infinity

= ∑(j+1).a_(j+1).z^j, sum from 0 to infinity

(b) We don't what the values of a_j are, so we can only say with definity that it converges for z = 0
You can do better than that. Try applying the ratio test and use the fact the original series converges everywhere.
(c) f^2 = (a_0)^2 + (a_0.a_1)z + (a_0.a_2)z^2 + ...
+ (a_1.a_0)z + (a_1.a_1)z^2 + ... etc.
You should collect terms. There's a pattern to the coefficient of zn.
(d) Again, we can only say it converges for definite where z = 0.
Again, you should be able to do better than that. Do you know any theorems about convergence of products of series?
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

Replies
21
Views
2K
Replies
8
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
9
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
7
Views
2K
  • · Replies 22 ·
Replies
22
Views
4K