Good afternoon fellow scientists,i have a small problem in evaluating the propagator for the complex Klein-Gordon field. Although the procedure is the one followed for the computation of the propagator of the real K-G field, a problem comes up:(adsbygoogle = window.adsbygoogle || []).push({});

As known: <0|T[itex]\varphi^{+}(x)\varphi(y)[/itex]|0> = [itex]\Theta(x^{0}-y^{0})[/itex]<0|[itex]\varphi^{+}(x)\varphi(y)[/itex]|0> + [itex]\Theta(y^{0}-x^{0})[/itex]<0|[itex]\varphi(y)\varphi^{+}(x)[/itex]|0>

and <0|[itex]\varphi^{+}(x)\varphi(y)[/itex]|0>=<0|[itex]\varphi(y)\varphi^{+}(x)[/itex]|0>

But if we try to verify that one of the above correlation functions is a green's function of the K-G equation we hit the obstacle: [itex]\partial_{x}[/itex]<0|[itex]\varphi^{+}(x)\varphi(y)[/itex]|0> . And I refer to it as an obstacle because of the commutation relation [[itex]\varphi(x),\pi^{+}(y)[/itex]]=0..How could i deal with this calculation..? Thanks in advance.

**Physics Forums - The Fusion of Science and Community**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Complex scalar field propagator evaluation.

Loading...

Similar Threads - Complex scalar field | Date |
---|---|

Derivation of momentum for the complex scalar field | Nov 18, 2015 |

Superpositions and complex structures | Nov 3, 2015 |

Introduction of the connection in Lagrangian for complex scalar field | Sep 19, 2014 |

Complex scalar field and contraction | Aug 20, 2011 |

Real scalars for complex scalar results | Jun 7, 2011 |

**Physics Forums - The Fusion of Science and Community**