Complex Variables - Max Modulus Inequality

Click For Summary
SUMMARY

The discussion centers on the Max Modulus Inequality for analytic functions within the unit disk, specifically demonstrating that if \( f \) is analytic on \( |z| < 1 \) and \( |f(z)| \leq M \) for \( |z| < 1 \), with \( f(\alpha) = 0 \) for some \( \alpha \) in the disk, then \( |f(z)| \leq M \left| \frac{z - \alpha}{1 - \overline{\alpha} z} \right| \). The proof utilizes the function \( g(z) = f((1 - \overline{\alpha} z) z + \alpha) \) and applies the Schwarz lemma to establish the inequality. Additionally, the discussion addresses a related problem involving the condition \( f^{(k)}(0) = 0 \) for \( k = 0, \ldots, N \) and shows that \( |f(z)| \leq M |z|^{N+1} \) for all \( |z| < 1 \).

PREREQUISITES
  • Understanding of analytic functions and their properties
  • Familiarity with the Max Modulus Theorem
  • Knowledge of the Schwarz lemma and its applications
  • Concept of analytic mappings in the context of the unit disk
NEXT STEPS
  • Study the application of the Schwarz lemma in complex analysis
  • Explore the properties of analytic functions within the unit disk
  • Learn about the Max Modulus Theorem and its implications for bounded analytic functions
  • Investigate the implications of the maximum principle in complex analysis
USEFUL FOR

Mathematicians, particularly those specializing in complex analysis, students studying analytic functions, and researchers exploring properties of bounded analytic functions in the unit disk.

joypav
Messages
149
Reaction score
0
Suppose that f is analytic on the disc $\vert{z}\vert<1$ and satisfies $\vert{f(z)}\vert\le{M}$ if $\vert{z}\vert<1$. If $f(\alpha)=0$ for some $\alpha, \vert{\alpha}\vert<1$. Show that,
$$\vert{f(z)}\vert\le{M\vert{\frac{z-\alpha}{1-\overline{\alpha}z}}\vert}$$

What I have:
Let $g(z)=f((1-\overline{\alpha}z)z+\alpha)$. Then g is analytic on the disc $\vert{z}\vert<1$ and $g(0)=f(\alpha)=0$.
If $\vert{f(z)}\vert\le{M}$ if $\vert{z}\vert<1$, then $\vert{g(z)}\vert\le{M}$ if $\vert{z}\vert<1$

1. $\vert{f((1-\overline{\alpha}z)z+\alpha)}\vert=\vert{g(z)}\vert\le{M\vert{z}\vert} \rightarrow \vert{f(z)}\vert\le{M\vert{\frac{z-\alpha}{1-\overline{\alpha}z}}}\vert$
(By substituting $z=\frac{z-\alpha}{1-\overline{\alpha}z}$)

2. Show that $g$ does satisfy $\vert{g(z)}\vert\le{M\vert{z}\vert}$.
Let $h(z)=\frac{g(z)}{z}$. Then h(z) is analytic on $\vert{z}\vert<1$, (removable singularity at z=0). Then by the Max Modulus Theorem, $\vert{h(z)}\vert$ attains its max somewhere on the boundary of $\vert{z}\vert<1$. Call this max M. Then,
$$\forall{z}, \vert{h(z)}\vert\le{M} \rightarrow \frac{\vert{g(z)}\vert}{\vert{z}\vert}\le{M} \rightarrow \vert{g(z)}\vert\le{M\vert{z}\vert}$$

Then, show that
$$M\vert{\frac{f(z)-f(z_0)}{M^2-\overline{f(z_0)}f(z)}}\vert \le{\vert{\frac{z-z_0}{1-\overline{z_0}z}}}\vert$$
for all $z, z_0$ in $w:\vert{w}\vert<1$.I'm just wondering if my first part is correct. If so, I assume I'll utilize the first to prove the second?
 
Physics news on Phys.org
Hi joypav,

In order for $g$ to be well-defined, $(1 - \overline{\alpha}z)z + \alpha$ has to be in $\Bbb D$ for all $z\in \Bbb D$, which is not generally true (consider $\alpha = z = \frac{1}{\sqrt{2}}$). Instead, consider that the function $\phi_\alpha : z\mapsto \frac{z - \alpha}{1 - \overline{\alpha}z}$ is an analytic mapping of $\Bbb D$ onto $\Bbb D$, so we may define $g = \frac{1}{M}f\circ \phi_{\alpha}^{-1}$. Then $g$ is an analytic mapping $\Bbb D\to \overline{\Bbb D}$ with $g(0) = 0$, so by the Schwarz lemma $\lvert g(z) \rvert \le \lvert z\rvert$ for all $z\in \Bbb D$. Thus $\lvert Mg(\phi_\alpha(z))\rvert \le M\lvert \phi_\alpha(z)\rvert$, or, $\lvert f(z)\rvert \le M\lvert\frac{z - \alpha}{1 - \overline{\alpha}z}\rvert$ for all $z\in \Bbb D$.
 
For the first part...
Consider the function
$$\Psi_\alpha:z\rightarrow\frac{z-\alpha}{1-\overline{\alpha}z}$$
an analytic map from D onto D, where D is $\vert{z}\vert<1$.
Then define
$$g=\frac{1}{M}(f\circ\Psi_\alpha^{-1})$$
$$g(0)=\frac{1}{M}f(\alpha)=0$$
Then, by Schwarz Lemma,
$$\forall{z}\in{D}, \vert{g(z)}\vert\leq\vert{z}\vert.$$
Take $z=\Psi_\alpha(z)$ and multiply M to both sides.
$$\vert{Mg(\Psi_\alpha(z))}\vert\leq{M}\vert{\Psi_\alpha(z)}\vert$$
$\rightarrow\vert{f(z)}\vert\leq{M}\vert{\frac{z-\alpha}{1-\overline{\alpha}z}}\vert$, for all $z\in{D}$.

For the second part...

Consider the function
$$g(z)=\frac{f(z)}{M}$$
$\rightarrow\vert{g(z)}\vert\leq{1}$ in $\vert{z}\vert<{1}$.
Define
$\Psi_{\alpha_0}:z\rightarrow\frac{z-\alpha_0}{1-\overline{\alpha_0}z}$ and $h(z)=\Psi_{\alpha_0}(g(z))$
Then $\vert{h(z)}\vert\leq1$ and $h(z_0)=\Psi_{\alpha_0}(g(z_0))=\Psi_{\alpha_0}(\alpha_0)=0$.
Now we can apply the previous inequality to the function h.

$$\vert{h(z)}\vert\leq{1\vert{\frac{z-z_0}{1-\overline{z_0}z}}\vert}$$

$$\rightarrow\vert{(\Psi_{\alpha_0}\circ{g})(z)}\vert\leq{\vert{\frac{z-z_0}{1-\overline{z_0}z}}\vert}$$

$$\rightarrow\vert{\Psi_{\alpha_0}(\frac{f(z)}{M})}\vert\leq{\vert{\frac{z-z_0}{1-\overline{z_0}z}}\vert}$$

$$\rightarrow\vert{\frac{\frac{f(z)}{M}-\alpha_0}{1-\overline{\alpha_0}\frac{f(z)}{M}}}\vert\leq{\vert{\frac{z-z_0}{1-\overline{z_0}z}}\vert}$$

Sub in $\alpha_0=g(z_0)\rightarrow\alpha_0=\frac{f(z_0)}{M}$.

$$\rightarrow\vert{\frac{\frac{f(z)}{M}-\frac{f(z_0)}{M}}{1-\frac{\overline{f(z_0)}}{M}\frac{f(z)}{M}}}\vert\leq{\vert{\frac{z-z_0}{1-\overline{z_0}z}}\vert}$$

$$\rightarrow\vert{\frac{\frac{1}{M}(f(z)-f(z_0))}{\frac{1}{M^2}(M^2-\overline{f(z_0)}f(z))}}\vert\leq{\vert{\frac{z-z_0}{1-\overline{z_0}z}}\vert}$$

$$\rightarrow{M\vert{\frac{f(z)-f(z_0)}{M^2-\overline{f(z_0)}f(z)}}\vert\leq{\vert{\frac{z-z_0}{1-\overline{z_0}z}}\vert}}$$

- - - Updated - - -

Additionally, there is a problem...

Suppose that $f^{(k)}(0)=0$ for k=0,...,N. Show that
$\vert{f(z)}\vert\leq{M\vert{z}\vert^{N+1}}$ for all $z, \vert{z}\vert<1$.

Are those inequalities used to prove this?
 
Your proofs look good. (Yes)

As for your latest question, you don't need those inequalities. A proof similar to the standard proof of the Schwarz lemma will suffice. The conditions on $f$ imply that that there is an analytic function $g$ on $\Bbb D$ such that $f(z) = z^{N+1} g(z)$ for all $z\in \Bbb D$. Since $\lvert f(z)\rvert \le M$ for all $\lvert z\rvert < 1$, then on every circle $\lvert z\rvert = \rho < 1$, $\lvert g(z)\rvert \le M\rho^{-N-1}$. Use the maximum principle, then take the limit as $\rho \to 1^{-}$ to obtain $\lvert g(z)\vert \le M$ for every $z\in \Bbb D$, i.e., $\lvert f(z)\rvert \le M \lvert z\rvert^{N+1}$ for all $z\in \Bbb D$.
 
Euge said:
Your proofs look good. (Yes)

As for your latest question, you don't need those inequalities. A proof similar to the standard proof of the Schwarz lemma will suffice. The conditions on $f$ imply that that there is an analytic function $g$ on $\Bbb D$ such that $f(z) = z^{N+1} g(z)$ for all $z\in \Bbb D$. Since $\lvert f(z)\rvert \le M$ for all $\lvert z\rvert < 1$, then on every circle $\lvert z\rvert = \rho < 1$, $\lvert g(z)\rvert \le M\rho^{-N-1}$. Use the maximum principle, then take the limit as $\rho \to 1^{-}$ to obtain $\lvert g(z)\vert \le M$ for every $z\in \Bbb D$, i.e., $\lvert f(z)\rvert \le M \lvert z\rvert^{N+1}$ for all $z\in \Bbb D$.

Oh okay, it is almost exactly like that proof. Thanks!
 

Similar threads

  • · Replies 8 ·
Replies
8
Views
2K
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 14 ·
Replies
14
Views
4K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K