- #1
Markus Kahn
- 112
- 14
Homework Statement
Consider an electron in a hydrogen atom in the presence of a constant magnetic field ##B##, which we take to be parallel to the ##z##-axis. Without the magnetic field and ignoring the spin-orbit coupling, the eigenfunctions are labelled by ##\vert n, l, m, m_s \rangle##, where m s denotes the spin quantum number ##m_s = \pm 1/2##. The additional effects lead to ##H = H_0 + \Delta H## with
$$\Delta H = H _ { \mathrm { SO } } + H _ { \mathrm { Z } } = \frac { 1 } { 2 m ^ { 2 } c ^ { 2 } } \frac { 1 } { r } \frac { d V } { d r } \vec { L } \cdot \vec { S } + \mu _ { \mathrm { B } } B _ { z } \left( L _ { z } + 2 S _ { z } \right),$$
where ##V (r) = −e^2 /r## and ##\mu_B =e/2mc## is the Bohr magneton.
- determine the first order perturbation of the energy spectrum, treating only the spin-orbit coupling as a perturbation.
- determine the energy spectrum to first order perturbation theory, treating both terms (i.e. ##\Delta H##) as a perturbation.
Hint: You need to diagonalise the ##2(2l + 1) \times 2(2l+ 1)## matrix where ##m = −l, ..., l##
and ##m_s = \pm 1/2## . Since ##[L_z + S_z , \Delta H] = 0##, this matrix is block-diagonal. - For ##B_z = 0##, reproduce the result for the spin orbit coupling that was derived in the lectures. Show that the first order correction in ##B_z## of this result is given by $$\Delta E _ { n \ell j m _ { j } } = g _ { \ell j } \mu _ { B } B _ { z } m _ { j } , \quad m _ { j } = - j , \ldots , j$$
where ##j## and ##m_j## refer to the diagonal representation of the rotation group corresponding to ##\vec{J}=\vec{L}+\vec{S}## and $$g _ { \ell , \ell + 1 / 2 } = \frac { 2 + 2 \ell } { 1 + 2 \ell } , \quad g _ { \ell , \ell - 1 / 2 } = \frac { 2 \ell } { 1 + 2 \ell }.$$
Homework Equations
All given in the exercise above.
The Attempt at a Solution
- This boils down to calculating ##\langle n, l',m',m_s'\vert H_{\rm SO} \vert n,l,m, m_s\rangle##. If I did the math correctly this should result in $$\langle n, l',m',m_s'\vert H_{\rm SO} \vert n,l,m, m_s\rangle = \frac{e^2}{2m^2c^2}\frac{1}{a_0^3n^3}\frac{1}{(l+1)(2l+1)}\delta_l^{l'}\delta^{m'}_m\delta_{m_s}^{m_s'},$$ where ##a_0:=\hbar^2/(me^2)##. This indicates that the matrix of ##H_{\rm SO}## is diagonal and therefore we find the correction of the energy in first order to be $$E_1^n = \frac{e^2}{2m^2c^2}\frac{1}{a_0^3n^3}\frac{1}{(l+1)(2l+1)}.$$
- Here the problems start. What I've done so far $$\begin{align*}\langle n, l',m',m_s'\vert \Delta H \vert n,l,m, m_s\rangle & = \langle n, l',m',m_s'\vert H_{\rm SO} + H_Z \vert n,l,m, m_s\rangle \\ &= \langle n, l',m',m_s'\vert H_{\rm SO} \vert n,l,m, m_s\rangle + \langle n, l',m',m_s'\vert H_Z \vert n,l,m, m_s\rangle \\ &= \left(E_1^n + \mu B_z (m+2m_s) \right)\delta^{m'}_m\delta_l^{l'}\delta_{m_s}^{m_s'}.\end{align*}$$ Since this would already imply a diagonal-matrix and the hint says I should diganolize it, I'm suspecting that I did something wrong... Could someone explain to me what went wrong?
- I'm completely out of ideas, especially for the second part.