I am reading Dummit and Foote (D&F) Section 15.1 on Affine Algebraic Sets.(adsbygoogle = window.adsbygoogle || []).push({});

On page 662 (see attached) D&F define a morphism or polynomial map of algebraic sets as follows:

-----------------------------------------------------------------------------------------------------

Definition. A map [itex] \phi \ : V \rightarrow W [/itex] is called a morphism (or polynomial map or regular map) of algebraic sets if

there are polynomials [itex] {\phi}_1, {\phi}_2, .......... , {\phi}_m \in k[x_1, x_2, ... ... x_n] [/itex] such that

[itex] \phi(( a_1, a_2, ... a_n)) = ( {\phi}_1 ( a_1, a_2, ... a_n) , {\phi}_2 ( a_1, a_2, ... a_n), ... ... ... , {\phi}_m ( a_1, a_2, ... a_n)) [/itex]

for all [itex] ( a_1, a_2, ... a_n) \in V [/itex]

----------------------------------------------------------------------------------------------

D&F then go on to define a map between the quotient rings k[W] and k[V] as follows: (see attachment page 662)

----------------------------------------------------------------------------------------------

Suppose F is a polynomial in [itex] k[x_1, x_2, ... ... x_n] [/itex].

Then [itex] F \circ \phi = F({\phi}_1, {\phi}_2, .......... , {\phi}_m) [/itex] is a polynomial in [itex] k[x_1, x_2, ... ... x_n] [/itex]

since [itex] {\phi}_1, {\phi}_2, .......... , {\phi}_m [/itex] are polynomials in [itex] x_1, x_2, ... ... , x_n [/itex].

... ... etc etc

----------------------------------------------------------------------------------------------

I am concerned that I do not fully understand exactly how/why [itex] F \circ \phi = F({\phi}_1, {\phi}_2, .......... , {\phi}_m) [/itex].

I may be obsessively over-thinking the validity of this matter (that may be just a notational matter) ... but anyway my understanding is as follows:

[itex] F \circ \phi (( a_1, a_2, ... a_n)) [/itex]

[itex] = F( \phi (( a_1, a_2, ... a_n)) [/itex]

[itex] = F( {\phi}_1 ( a_1, a_2, ... a_n) , {\phi}_2 ( a_1, a_2, ... , a_n), ... ... ... , {\phi}_m ( a_1, a_2, ... a_n) ) [/itex]

[itex] = F ( {\phi}_1, {\phi}_2, ... ... ... , {\phi}_m ) ( a_1, a_2, ... , a_n) [/itex]

so then we have that ...

[itex] F \circ \phi = F({\phi}_1, {\phi}_2, .......... , {\phi}_m) [/itex].

Can someone please confirm that the above reasoning and text is logically and notationally correct?

Peter

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Composition of Functions - in the context of morphisms in algebraic ge

**Physics Forums | Science Articles, Homework Help, Discussion**