Conceptual questions on unitarity and time evolution

Click For Summary
SUMMARY

The discussion centers on the conservation of the norm of a state vector in isolated quantum systems during time evolution, emphasizing that this conservation is crucial for maintaining the integrity of probabilities associated with observables. The participants explore the implications of Wigner's Theorem and the Markovian nature of quantum evolution, specifically how the composition of evolution operators, expressed as $$U(t_{2},t_{0})=U(t_{2},t_{1})U(t_{1},t_{0})$$, reflects the independence of experimental outcomes from the timing of measurements. The conversation highlights the Principle of Relativity as a foundational concept in understanding these quantum mechanics principles.

PREREQUISITES
  • Understanding of quantum mechanics and state vectors
  • Familiarity with time evolution operators in quantum systems
  • Knowledge of Wigner's Theorem and its implications
  • Concept of Markovian processes in quantum evolution
NEXT STEPS
  • Study the implications of Wigner's Theorem in quantum mechanics
  • Explore the mathematical formulation of time evolution operators in quantum systems
  • Research the Principle of Relativity and its application in quantum physics
  • Learn about the Born rule and its significance in determining probabilities in quantum mechanics
USEFUL FOR

Quantum physicists, students of quantum mechanics, and researchers interested in the foundational principles of time evolution and state vector conservation in quantum systems.

"Don't panic!"
Messages
600
Reaction score
8
From a physical perspective, is the reason why one requires that the norm of a state vector (of an isolated quantum system) is conserved under time evolution to do with the fact that the state vector contains all information about the state of the system at each given time (i.e. the probabilities of it having a particular energy, momentum, etc..) and so when it is evolved in time, although the individual probabilities of each observable will change, the total probability will always be conserved, since there is no external influence on the system and so the set of allowed values for each observable will not increase/decrease. That is, the observables of the evolved quantum system must assume values (with a certain probability) from the original set of values (that they could "choose from" at the initial time) ?! (sorry, I feel I haven't worded this part in the most articulate way).

Additionally, does the composition of two evolution operators, i.e. $$U(t_{2},t_{0})=U(t_{2},t_{1})U(t_{1},t_{0})$$ follow from the requirement that quantum evolution is Markovian, that is, that one can obtain the same results by knowing the state of a system at a given instant in time as one would obtain from knowing complete evolution of a system? For example, Say one observer knew the state of a quantum system at an initial time ##t_{0}## to be ##\lvert\psi (t_{0})\rangle##. The system is then allow to evolve to its state at some later time ##t_{2}##, ##\lvert\psi (t_{2})\rangle=U(t_{2},t_{0})\lvert\psi (t_{0})\rangle##. Another observer doesn't know what state the system was in at time ##t_{0}##, but does know the state of the system at some time, ##t_{1}##, ##\lvert\psi (t_{1})\rangle## (with ##t_{0}<t_{1}<t_{2}##). Again, the system evolves from its state at time ##t_{1}##, ##\lvert\psi (t_{1})\rangle##, to its evolved state at time ##t_{2}##, described by this observer by ##\lvert\psi (t_{2})\rangle=U(t_{2},t_{1})\lvert\psi (t_{1})\rangle##. Since the final state is the same for both observers, and the first observer will also be able to determine the evolved state at ##t_{1}##, ##\lvert\psi (t_{1})\rangle=U(t_{1},t_{0})\lvert\psi (t_{0})\rangle## (since they know the state of the system at the earlier time ##t_{0}##), it follows that $$\lvert\psi (t_{2})\rangle=U(t_{2},t_{1})\lvert\psi (t_{1})\rangle=U(t_{2},t_{1})U(t_{1},t_{0})\lvert\psi (t_{0})\rangle=U(t_{2},t_{0})\lvert\psi (t_{0})\rangle\\ \Rightarrow\quad U(t_{2},t_{1})U(t_{1},t_{0})=U(t_{2},t_{0})$$

Would this be a correct description at all?
 
Physics news on Phys.org
"Don't panic!" said:
From a physical perspective, is the reason why one requires that the norm of a state vector (of an isolated quantum system) is conserved under time evolution to do with the fact that the state vector contains all information about the state of the system at each given time (i.e. the probabilities of it having a particular energy, momentum, etc..) and so when it is evolved in time, although the individual probabilities of each observable will change, the total probability will always be conserved, since there is no external influence on the system and so the set of allowed values for each observable will not increase/decrease. That is, the observables of the evolved quantum system must assume values (with a certain probability) from the original set of values (that they could "choose from" at the initial time) ?! (sorry, I feel I haven't worded this part in the most articulate way).

Wigners Theorem

Thanks
Bill
 

Attachments

bhobba said:
Wigners Theorem

So is the idea that the outcome of an experiment should be independent of the time that it was carried out? In my example, is the point that if one experimenter starts the experiment with a system (call it A) in some particular state at some earlier time and then another experimenter starts an experiment at a later time in which the system they are considering (call it B) is in an identical state to the state that the system A has evolved to at this later time, then from this point both should evolve (assuming the experimental conditions are identical) such that their final states, at some much later time, are identical?
 
What you wrote is rather convoluted.

Its much easier to view as simply a change in coordinates which fairly obviously shouldn't change the physics, in particular it shouldn't change the probabilities from the Born rule. It would be very very weird if simply changing the where the origin of your coordinate system is or the velocity its moving changed that..

While its rather obvious in actuality you are invoking the POR - Principle Of Relativity:
https://en.wikipedia.org/wiki/Principle_of_relativity

Thanks
Bill
 
bhobba said:
What you wrote is rather convoluted.

Sorry I realize it is quite convoluted, but I was really trying to put in words what is conceptually going on, and why ##U(t_{2},t_{0})=U(t_{2},t_{1})U(t_{1},t_{0})##, in terms of relating a quantum state at some initial time to it's evolved states at later times.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 9 ·
Replies
9
Views
4K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 18 ·
Replies
18
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K