MHB Conditional expectation of joint PMF

nacho-man
Messages
166
Reaction score
0
(please refer to attached image)
The question appears to be simple enough, but i have two queries

A) does E[X1 X2] mean the same as E[X1 | X2]

B) If not/so, how exactly do I go about computing this. I've seen a few formulas in my lectures notes for computing conditional expectations for discrete random variables,
however I find it difficult to understand and apply the notation/procedure.

Any help is appreciated!


edit: ok, after some more research, I've found that
E(X1 X2] simply means The expectations of X1 and X2 multiplied by each other.

so, what I want to ask now is this.
is the PMF of X1, given that table:

X1 | -1 | 0 | 1 |
px(X1)| 1/3 | 0 | 1/3 |
And finally, how do i find out if X1 and X2 are independent?


EDIT 2: okay, is this correct

for E[X1 X2]
i do:

(-1)(-1)*(1/6) + ...

That is multiply each (X1,X2) and then multiply that by the probability of its occurrence, and add them all up?
 

Attachments

  • conditional joint PMF.png
    conditional joint PMF.png
    10.1 KB · Views: 116
Last edited:
Physics news on Phys.org
nacho said:
okay, is this correct

for E[X1 X2]
i do:

(-1)(-1)*(1/6) + ...

That is multiply each (X1,X2) and then multiply that by the probability of its occurrence, and add them all up?

Yes.

I suspect that answers all your questions.

If not, then let me add that to find E[X1|X2=1] you find each pair (x1,x2) such that x2=1 and do:
((-1)*(1/6) + ...) / ((1/6) + ...)
 
nacho said:
(please refer to attached image)
The question appears to be simple enough, but i have two queries

A) does E[X1 X2] mean the same as E[X1 | X2]

B) If not/so, how exactly do I go about computing this. I've seen a few formulas in my lectures notes for computing conditional expectations for discrete random variables, however I find it difficult to understand and apply the notation/procedure.

Any help is appreciated!...

In formal notation $\displaystyle E [X_{1}\ X_{2}]$ means the expected value of the r.v. $\displaystyle X = X_{1}\ X_{2}$ and $\displaystyle E [X_{1} | X_{2}]$ means the expected value of the r.v. $\displaystyle X_{1}$ conditioned by the r.v. $\displaystyle X_{2}$, i.e... $\displaystyle E [X_{1}| X_{2}] = \sum x_{1} P \{X_{1}=x_{1} | X_{2} = x_{2}\}$

Kind regards

$\chi$ $\sigma$
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.

Similar threads

Back
Top