Conditional probability: Eye color of sibling

Click For Summary

Discussion Overview

The discussion revolves around calculating the conditional probability of a second child having a specific genotype ($bb$) given that the first child has that genotype. The scenario involves genetic combinations of parents with different genotypes and explores the implications of these combinations on the probabilities of offspring genotypes.

Discussion Character

  • Exploratory
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant outlines the initial probability calculations for the child being $bb$ based on the parents' genotypes and presents a formula for the probability of the second child being $bb$ given the first child is $bb$.
  • Another participant suggests that the problem may have counterintuitive solutions and proposes a different approach to the branching of possibilities based on the known genotype of the first child.
  • A later reply indicates that the course instructor has corrected the initial participant's answer, implying that the instructor's solution aligns with the second participant's reasoning.
  • One participant expresses uncertainty about their method, suggesting it may not be applicable due to the complexities of second-generation genetic problems.

Areas of Agreement / Disagreement

There is no consensus on the correct probability for the second child having the genotype $bb$. Participants present differing methods and interpretations, leading to unresolved disagreement on the solution.

Contextual Notes

The discussion highlights the complexity of conditional probability in genetics, particularly when dealing with multiple generations and unknown parental genotypes. There are indications of missing assumptions and the potential for different interpretations of the problem.

carnivean1
Messages
2
Reaction score
0
Ok I am really stumped and have no clue what I am missing...Here is the scenario. We have a mother and father who can be either $BB$, $Bb$ or $bb$.
The probability for both is:$$P(BB) = P(bb) = \frac{1}{4}$$
$$P(Bb) = \frac{1}{2}$$For the child one gene of the mother and one from the father is randomly chosen.
We want to compute the chance for a child to be $bb$.
Let us denote the parents with:
$$P(mother, father)$$
So the sample space is (- i only posted the part of the sample space that we need, not the whole):
$$P(bb,bb) = (\frac{1}{4})^2=\frac{1}{16}$$
$$P(Bb,bb) = P(bb,Bb) =\frac{1}{4} \frac{1}{2}=\frac{1}{8}$$
$$P(Bb,Bb) = (\frac{1}{2})^2=\frac{1}{4}$$
So $P(child = bb) $ is as follows:
$$ P(bb,bb) * 1 + P(Bb,bb) * 0.5 + P(bb,Bb) * 0.5 + P(Bb,Bb) * 0.25$$
$$ = 4 * \frac{1}{16} = \frac {1}{4}$$This part is correct. In the next part we know, that the first child of a family has $bb$ and we have to calculate the chance that the 2nd child has $bb$ as well.My reasoning:
Each path gives us a chance of $\frac{1}{16}$ for the first child being $bb$, so if we know that, we have the following sample space for the parents:
$$(bb,bb), (Bb,bb), (bb,Bb), (Bb, Bb)$$ each is equally likely to be the parent combination.
$$P(bb,bb) = P(Bb,bb) = P(bb,Bb) = P(Bb, Bb) = \frac{1}{4}$$
The chance of the 2nd child being also $bb$ is:
$$ P(bb,bb) * 1 + P(Bb,bb) * 0.5 + P(bb,Bb) * 0.5 + P(Bb,Bb) * 0.25$$
$$ = \frac{1}{4} + \frac{1}{4}*0.5+ \frac{1}{4}*0.5 + \frac{1}{4}*0.25 = \frac {9}{16}$$But this answer is wrong and I don't know why, could someone please help, I even simulated it and got the exact same result -.-
 
Physics news on Phys.org
Hi carnivean,

Welcome to MHB! :)

These questions are really confusing and often involve counter intuitive solutions. If you can check your answer then I might try this (although I'm not 100% sure it's correct).

There are 16 combinations (or $2^4$) we can make with $B,B,b,b$. We only care about the ones that start with $bb$ though, since the first child is known to be $bb$. So if we start with four branches for the first child and then branch off from that, how many possibilities do we have? We have two levels basically... 4 branches for the first child and 4 more off each of those. I think the answer should be 1/4 again because only one branch off our original $bb$ branch satisfies the condition.

Sometimes this will be worded like "at least one child is $bb$", in which case we have a different sample space. I would try 1/4 though if you can check your answer. I'm curious if this is correct.
 
The course instructor corrected his answer, my solution is indeed correct...
 
carnivean said:
The course instructor corrected his answer, my solution is indeed correct...

Ok, good to know. I didn't see anything wrong with your logic but was trying to think of it differently. I believe my method doesn't work because it's a second generation problem - we have the parents genes that are unknown who pass them along to kids. I was referring to questions like you see here.

Thank you for the followup!
 

Similar threads

  • · Replies 10 ·
Replies
10
Views
5K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 8 ·
Replies
8
Views
7K
  • · Replies 7 ·
Replies
7
Views
963
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 36 ·
2
Replies
36
Views
5K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K