Conditional probability problem

Click For Summary

Homework Help Overview

The discussion revolves around a problem involving conditional probability and binomial distribution related to voting behavior in a sample population. The original poster presents a scenario where 45% of a population is expected to vote for a political block, and they are tasked with calculating probabilities for specific outcomes based on a sample of 10 individuals.

Discussion Character

  • Exploratory, Conceptual clarification, Mathematical reasoning, Problem interpretation

Approaches and Questions Raised

  • Participants explore the use of binomial coefficients and the binomial probability formula. There is a discussion about the correct interpretation of probabilities related to voting outcomes, including the complement of certain events. Questions arise regarding the relationship between different voting scenarios and the implications of calculating probabilities for various outcomes.

Discussion Status

The discussion is active, with participants providing insights and corrections regarding the application of probability concepts. Some guidance has been offered regarding the use of binomial distribution functions, and there is an ongoing exploration of the definitions and relationships between different probability events.

Contextual Notes

Participants are navigating the distinction between conditional and ordinary probability, with some confusion regarding the implications of the sample percentages and the calculations involved. There is an emphasis on clarifying assumptions and definitions related to the problem setup.

MathMan2022
Messages
12
Reaction score
1
Homework Statement
45% of the population is said to for a certain political block A at an election. 10 people are sampled.

a) Whats the prob that 5 of them vote block A?

b) What the prob that none of them vote block A?
Relevant Equations
P(A and B) = P(A) * P(B)
P(Not B) = 1 - P(B)
A) P(A and B) = 0.45 * 5/10
B P(Not B) = 1 - ( 0.45 * 5/10)

Is it like this?
 
Physics news on Phys.org
MathMan2022 said:
Homework Statement:: 45% of the population is said to for a certain political block A at an election. 10 people are sampled.

a) Whats the prob that 5 of them vote block A?

b) What the prob that none of them vote block A?
Relevant Equations:: P(A and B) = P(A) * P(B)
P(Not B) = 1 - P(B)

A) P(A and B) = 0.45 * 5/10
B P(Not B) = 1 - ( 0.45 * 5/10)

Is it like this?
It's nothing like that. What have you learned about probability theory so far? Have you heard the term binomial coefficients?
 
PeroK said:
It's nothing like that. What have you learned about probability theory so far? Have you heard the term binomial coefficients?
Oh its like that? Yes I have heard of that.

P(X = r) = K(n,r)*p^r*(1-p)^(n-r) right?
 
So
a) P(X = 5) = K(10, 5)*0.45^5*(1 - 0.45)^(10 - 5)= 0.23
b) P(X = no votes) = 1- P(X=5) = 1-0.23
 
MathMan2022 said:
So
a) P(X = 5) = K(10, 5)*0.45^5*(1 - 0.45)^(10 - 5)= 0.23
That looks a lot better.
MathMan2022 said:
b) P(X = no votes) = 1- P(X=5) = 1-0.23
Why would no votes be the complement of 5 votes? That's the probability of any number of votes except 5.
 
If 45% is sampled to vote for block A. Then 55 % must non voters for block A?
 
MathMan2022 said:
If 45% is sampled to vote for block A. Then 55 % must non voters for block A?
No, it means that 55% don't vote for block A.
 
MathMan2022 said:
If 45% is sampled to vote for block A. Then 55 % must non voters for block A?
Look at it this way, suppose you change part a) to calculate ##P(X = 4)##. Would your answer to part b) change to ##P(X = 0) = 1 - P(X = 4)##?
 
PeroK said:
Look at it this way, suppose you change part a) to calculate ##P(X = 4)##. Would your answer to part b) change to ##1 - P(X = 4)##?
That would that is the prob that 4 people or less voted for block A?
 
  • #10
MathMan2022 said:
That would that is the prob that 4 people or less voted for block A?
No, that would be the probability that 0, 1, 2, 3, 5, 6, 7, 8, 9 or 10 people vote for block A. Any number but ##4##. Note that we have:
$$\sum_{n = 0}^{10} P(X = n) = 1$$
 
  • #11
PeroK said:
No, that would be the probability that 0, 1, 2, 3, 5, 6, 7, 8, 9 or 10 people vote for block A. Any number but ##4##. Note that we have:
$$\sum_{n = 0}^{10} P(X = n) = 1$$
Then that would be P(X=0) I am searching for? Because that would be the prob that non of the 10 voted for block A.
 
  • Like
Likes   Reactions: PeroK
  • #12
MathMan2022 said:
Then that would be P(X=0) I am searching for? Because that would be the prob that non of the 10 voted for block A.
Yes, exactly.
 
  • Like
Likes   Reactions: MathMan2022
  • #13
Here's a tip. The Excel spreadsheet has a binomial distribution function (and other useful statistical things). For example, if you type:

=BINOMDIST(5, 10, 0.45, FALSE)

Then, you'll get the answer ##0.23##.

See the Excel help pages for more information.
 
  • Like
Likes   Reactions: MathMan2022
  • #14
You can do the exact same thing for 0 people that you did for 5 people.
 
  • #15
This is not conditional probability. It's plain ordinary probability.
 
  • #16
Although you don’t need binomial for zero, it’s analogous to flipping heads ten times in a row (as there is only one combination)
 

Similar threads

Replies
8
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
5
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K