Conditional probability prove or disprove

Click For Summary
SUMMARY

This discussion analyzes two statements regarding conditional probability within a probability measure $P$ on a $\sigma$-Algebra $\mathcal{A}$. The first statement, $P(A\mid B)=1-P(\overline{A}\mid B)$, is proven to be true using the properties of disjoint sets and the definition of conditional probability. Conversely, the second statement, $P(A\mid B)=1-P(A\mid \overline{B})$, is disproven through a contradiction that arises when $P(B)=0$, leading to an undefined conditional probability.

PREREQUISITES
  • Understanding of conditional probability and its definition
  • Familiarity with $\sigma$-Algebras and probability measures
  • Knowledge of disjoint sets and their properties
  • Ability to perform proofs by contradiction in mathematical contexts
NEXT STEPS
  • Study the properties of $\sigma$-Algebras in probability theory
  • Learn about the implications of $P(B)=0$ on conditional probabilities
  • Explore the complement rule in probability, specifically $P(\overline{U})=1-P(U)$
  • Practice proofs by contradiction in the context of probability statements
USEFUL FOR

Mathematicians, statisticians, and students studying probability theory, particularly those interested in conditional probabilities and their applications.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Let $P$ be a probability measure on a $\sigma$-Algebra $\mathcal{A}$. I want to prove or disprove the following statements:
  1. $P(A\mid B)=1-P(\overline{A}\mid B)$, for $A, B\in \mathcal{A}$
  2. $P(A\mid B)=1-P(A\mid \overline{B})$, for $A, B\in \mathcal{A}$
I have done the following:
  1. We have that $B=\left (A\cap B\right )\cup \left (\overline{A}\cap B\right )$. Since the sets $\left (A\cap B\right )$ and $\left (\overline{A}\cap B\right )$ are disjoint we have that $P\left [\left (A\cap B\right )\cup \left (\overline{A}\cap B\right )\right ]=P\left (A\cap B\right )+P \left (\overline{A}\cap B\right )$.
    Therefore, we get $P(B)=P\left (A\cap B\right )+P \left (\overline{A}\cap B\right )$.

    We have that $P(A\mid B)=\frac{P(A\cap B)}{P(B)}\Rightarrow P(A\cap B)=P(A\mid B)P(B)$ and $P(\overline{A}\mid B)=\frac{P(\overline{A}\cap B)}{P(B)}\Rightarrow P(\overline{A}\cap B)=P(\overline{A}\mid B)P(B)$.

    So, we get $P(B)=P(A\mid B)P(B)+P(\overline{A}\mid B)P(B) \Rightarrow P(B)=P(B)\left [P(A\mid B)+P(\overline{A}\mid B)\right ] \overset{P(B)>0}{\Rightarrow }1=P(A\mid B)+P(\overline{A}\mid B) \Rightarrow P(A\mid B)=1-P(\overline{A}\mid B)$
    So, the statement is true.

    Is this correct? $$$$
  2. $P(A\mid B)=1-P(A\mid \overline{B})$, for $A, B\in \mathcal{A}$

    From the definition of conditional probability then we get the statement $\frac{P(A\cap B)}{P(B)}=1-\frac{P(A\cap \overline{B})}{P(\overline{B})}$.

    For $A=\Omega$ we get $\frac{P(\Omega\cap B)}{P(B)}=1-\frac{P(\Omega\cap \overline{B})}{P(\overline{B})}\Rightarrow \frac{P( B)}{P(B)}=1-\frac{P( \overline{B})}{P(\overline{B})}\Rightarrow 1=1-1 \Rightarrow 1=0$, a contradiction.

    Therefore, this statement is in general not true.

    Is this correct?
 
Last edited by a moderator:
Physics news on Phys.org
mathmari said:
1. $P(A\mid B)=1-P(\overline{A}\mid B)$, for $A, B\in \mathcal{A}$

Hey mathmari!

What if $P(B)=0$? (Wondering)

mathmari said:
2. $P(A\mid B)=1-P(A\mid \overline{B})$, for $A, B\in \mathcal{A}$

From the definition of conditional probability then we get the statement $\frac{P(A\cap B)}{P(B)}=1-\frac{P(A\cap \overline{B})}{P(\overline{B})}$.

How do we get that? (Wondering)
 
I like Serena said:
What if $P(B)=0$? (Wondering)

If $P(B)=0$ then the conditional probaibility $P(A\mid B)$ is not defined, is it? (Wondering)
I like Serena said:
How do we get that? (Wondering)

By definition we have that $P(A\mid B)=\frac{P(A\cap B)}{P(B)}$ and $P(A\mid \overline{B})=\frac{P(A\cap \overline{B})}{P(\overline{B})} $, or not? Therefore we get that $P(A\mid B)=1-P(A\mid \overline{B})$ is equivalent to $1-\frac{P(A\cap \overline{B})}{P(\overline{B})} $. Is this wrong? (Wondering)
 
mathmari said:
If $P(B)=0$ then the conditional probaibility $P(A\mid B)$ is not defined, is it? (Wondering)

Ah yes.
That's because $P(A\mid B)=\frac{P(A\cap B)}{P(B)}$, which is indeed undefined if $P(B)=0$.

mathmari said:
By definition we have that $P(A\mid B)=\frac{P(A\cap B)}{P(B)}$ and $P(A\mid \overline{B})=\frac{P(A\cap \overline{B})}{P(\overline{B})} $, or not?

Yes.

mathmari said:
Therefore we get that $P(A\mid B)=1-P(A\mid \overline{B})$ is equivalent to $1-\frac{P(A\cap \overline{B})}{P(\overline{B})} $. Is this wrong?

Well, I'm only aware of the complement rule $P(\overline U)=1-P(U)$, but it's not clear to me how this is applied. :confused:
 
I like Serena said:
Well, I'm only aware of the complement rule $P(\overline U)=1-P(U)$, but it's not clear to me how this is applied. :confused:

From the definition of the conditional probability we have that $P(A\mid B)=\frac{\mathbb{P}(A\cap B)}{\mathbb{P}(B)}$ and $P(A\mid \overline{B})=\frac{\mathbb{P}(A\cap \overline{B})}{\mathbb{P}(\overline{B})}$.

Replacing these at $\mathbb{P}(A\mid B)=1-\mathbb{P}(A\mid \overline{B})$ we get $\frac{\mathbb{P}(A\cap B)}{\mathbb{P}(B)}=1-\frac{\mathbb{P}(A\cap \overline{B})}{\mathbb{P}(\overline{B})}$.

Isn't it correct? (Wondering)
 
mathmari said:
From the definition of the conditional probability we have that $P(A\mid B)=\frac{\mathbb{P}(A\cap B)}{\mathbb{P}(B)}$ and $P(A\mid \overline{B})=\frac{\mathbb{P}(A\cap \overline{B})}{\mathbb{P}(\overline{B})}$.

Replacing these at $\mathbb{P}(A\mid B)=1-\mathbb{P}(A\mid \overline{B})$ we get $\frac{\mathbb{P}(A\cap B)}{\mathbb{P}(B)}=1-\frac{\mathbb{P}(A\cap \overline{B})}{\mathbb{P}(\overline{B})}$.

Isn't it correct? (Wondering)

Oh wait! You're doing a proof by contradiction!
I totally missed that.
Perhaps good to mention that. That is, 'suppose it is true, then...'. (Nerd)
 
I like Serena said:
Oh wait! You're doing a proof by contradiction!
I totally missed that.
Perhaps good to mention that. That is, 'suppose it is true, then...'. (Nerd)

Ah ok! Is the counterexample that I used correct? (Wondering)
 
mathmari said:
Ah ok! Is the counterexample that I used correct?

Yes. (Nod)
 
I like Serena said:
Yes. (Nod)

Great! Thank you! (Yes)
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 7 ·
Replies
7
Views
834
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
Replies
10
Views
1K