MHB Conditional proof for multiple quantifier

Click For Summary
To prove ((Ǝx) F(x) → (Ǝx) G(x)) using conditional proof, start with the premises: ((Ǝx) F(x) → (∀z) H(z)) and H(a) → G(b). The discussion suggests that a formal proof in logical calculus may be necessary for clarity. A reference link is provided for additional guidance on formal proofs. Understanding the relationship between existential and universal quantifiers is crucial in this context.
lize
Messages
1
Reaction score
0
Hi, I don't know how to prove ((Ǝx) F(x) →(Ǝx) (G(x)) with conditional proof from:
((Ǝx) F(x) → (∀z) H(z))
H(a) →G(b)

Thanks
 
Physics news on Phys.org
What kind of proof do you have in mind? If you are talking about a formal proof in some logical calculus, then please see https://driven2services.com/staging/mh/index.php?threads/29/.
 
There is a nice little variation of the problem. The host says, after you have chosen the door, that you can change your guess, but to sweeten the deal, he says you can choose the two other doors, if you wish. This proposition is a no brainer, however before you are quick enough to accept it, the host opens one of the two doors and it is empty. In this version you really want to change your pick, but at the same time ask yourself is the host impartial and does that change anything. The host...

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K