Scootertaj
- 97
- 0
1. Given f(x,y) = 2, 0<x<y<1, show V(Y) = E(V(Y|X)) + V(E(Y|x))
I've found V(Y|X) = \frac{(1-x)^2}{12} and E(Y|X) = \frac{x+1}{2}
So, E(V(Y|X))=E(\frac{(1-x)^2}{12}) = \int_0^y \frac{(1-x)^2}{12}f(x)dx, correct?
Homework Equations
I've found V(Y|X) = \frac{(1-x)^2}{12} and E(Y|X) = \frac{x+1}{2}
The Attempt at a Solution
So, E(V(Y|X))=E(\frac{(1-x)^2}{12}) = \int_0^y \frac{(1-x)^2}{12}f(x)dx, correct?