I Conflicting Conventions for Bernoulli Numbers?

nomadreid
Gold Member
Messages
1,748
Reaction score
243
TL;DR Summary
In the Wiki article on Bernoulli numbers, it gives two expressions that, if I understand correctly, are supposed to be equal except at one point. But I am not sure I understand it correctly
In the Wikipedia article https://en.wikipedia.org/wiki/Bernoulli_number on Bernoulli’s numbers, it explains that there are two conventions which differ only at m=1. Then it says…

Bernoulli1.PNG


Under “explicit definitions”, it gives, for m>1

Bernoulli2.PNG


So, it seems pretty straightforward that they are saying that (except for m=1) these two expressions are equal, but that all the extra terms in the second expression (+) not included in the first one (-) would cancel out seems so incredible that I think I might be misinterpreting something. Am I?

Thanks
 
Mathematics news on Phys.org
The expansion of ##(v+1)^m## follows Pascal's triangle, hence binomial coefficients, so yes, the terms can cancel out.
 
Thanks, DrClaude
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top