1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Confusing wording? Energy conservation part two

  1. Feb 19, 2007 #1
    1. The problem statement, all variables and given/known data
    A 900-kg two-stage rocket is traveling at a speed of 6.50 x 10^3 m/s away from Earth when a predesigned explosion separates the rocket into two sections of equal mass that then move with a relative speed (relative to each other) of 2.80 x 10^3 m/s along the original line of motion. a) What is the speed and direction of each segment after the explosion? b) How much energy was supplied by the explosion? [Hint: What is the change in kinetic energy as a result of the explosion?]


    2. Relevant equations
    E = K + U = (.5)mv^2 + mgy


    3. The attempt at a solution
    This doesn't look like too difficult a problem, but I'm confused by the wording that the text here uses. Specifically, the part where it says that their speed in relation to each other is 2.80 x 10^3 m/s which is slower than they were both moving a moment ago. If an explosion has separated the rocket into two pieces, wouldn't one be moving more quickly and the other be moving more slowly? Is it trying to say that one piece is now moving 1.40 x 10^3 m/s faster and the other is moving 1.40 x 10^3 m/s slower (this is all I could come up with)? :confused: Similarly, if they're both moving at that speed along the original line of motion, why does it ask for the direction of their motion as well? I don't see any indication in the problem that either piece has changed course... I'm sure it can't be too difficult a problem, but I really wish there had been some kind of accompanying diagram. If anyone could help by writing this out in a way I could understand it (or drawing it if it'd be easier) I'd be a happy camper.
     
    Last edited: Feb 19, 2007
  2. jcsd
  3. Feb 19, 2007 #2

    Doc Al

    User Avatar

    Staff: Mentor

    They are talking about relative speed, not speed with respect to the ground. For example, if one is moving at 100 m/s up and the other at 101 m/s up, then their relative speed is 1 m/s.
    Yes.
    Direction can be up or down. I suggest you call up positive and down negative.

    Hint: This in not an energy conservation problem. Mechanical energy is not conserved in an explosion. But something else is conserved. What? :wink:
     
  4. Feb 19, 2007 #3
    Conservation of momentum, of course. I swear that's that I meant to say :tongue:

    Wait, so then it's saying that one piece gets blown higher up and the other piece gets blown down (in relation to the original trajectory)? Wouldn't they then not be traveling "2.80 x 10^3 m/s along the original line of motion"? Is it something else? I'm having trouble visualizing what's happening here...
     
    Last edited: Feb 19, 2007
  5. Feb 19, 2007 #4
    I guess my question could be written a bit more simply as: by "two sections of equal mass that then move with a relative speed (relative to each other) of 2.80 x 10^3 m/s along the original line of motion" does it mean that piece 1 is traveling at 2.80 x 10^3 m/s in relation to piece 2 (which would be traveling at 0 m/s in relation to piece 1)?

    or

    does it mean that both pieces are traveling at 2.80 x 10^3 m/s and, if so, how is this possible considering one has to be slowed down and the other sped up by the force of the explosion?

    and

    how does direction factor into all of this?
     
  6. Feb 20, 2007 #5

    Doc Al

    User Avatar

    Staff: Mentor

    Good answer. :wink:

    Originally, the two rocket pieces are traveling at the same speed: 6.50 x 10^3 m/s upwards. After the explosion, the top piece is traveling at speed Vt and the bottom piece is traveling at speed Vb. Their relative speed is 2.80 x 10^3 m/s. It's up to you, using conservation of momentum and the given data, to find the actual final speeds with respect to the ground.

    Almost. The top piece is traveling at a relative speed of +2.80 x 10^3 m/s (up) with respect to the bottom piece and, conversely, the bottom piece is traveling at a relative speed of -2.80 x 10^3 m/s (down) with respect to the top piece. Note that I use + to mean "up" and - to mean "down".
    It doesn't mean that.
    By direction they mean sign. Is it going up or down? You know the top piece must be going up, since it picked up speed with the explosion. But the bottom piece may just slow down (and thus keep going up) or perhaps is now going in the opposite direction--down. That's part of what you need to figure out.

    To solve this:
    (1) Calling the final speeds Vt & Vb, write an equation for conservation of momentum.
    (2) Write another equation for their relative velocity.
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?



Similar Discussions: Confusing wording? Energy conservation part two
Loading...