- #1
BikGer2
- 2
- 1
- Homework Statement
- Determine the energy which body of mass m1=50 kg transfers to body of mass m2=70kg, if body 1 is moving towards body 2 with constant velocity of v1 = 20 m/s while body 2 is at rest. The collision is perfectly elastic and frontal (assuming this means the collision is central).
- Relevant Equations
- \begin{align}
m_1v_1 + m_2v_2 = m_1v_1' + m_2v_2' \nonumber \\
\frac{m_1v_1^2}{2} + \frac{m_2v_2^2}{2} = \frac{m_1v_1'^2}{2} + \frac{m_2v_2'^2}{2} \nonumber
\end{align}
Hi,
I assumed I was supposed to find the amount of kinetic energy body 2 receives after contact, assuming the collision is central, body 1 will be at rest after the collision.
I started by using the equation for conservation of momentum:
\begin{align}
m_1v_1 = m_1v_1' + m_2v_2' \\
50 * 20 = 50v_1' + 70 v_2' \nonumber \end{align}
Then kinetic energy:
\begin{align}
m_1v_1^2 = m_1v_1'^2 + m_2v_2'^2 \\
50 * 400 = 50v_1'^2 + 70v_2'^2 \nonumber \end{align}
From the first equation, $$v_1' = \frac{1000 - 70v_2'}{50} = 20 - 1.4v2'$$
Which was then substituted into the kinetic energy equation:
\begin{align}
20000 = 50(20 - 1.4v_2')^2 + 70v_2'^2 \nonumber \\
20000 = 50(400 - 56v_2' + 1.96v_2'^2) + 70v_2'^2 \nonumber \end{align}
After dividing everything by 50 and sorting everything out:
\begin{align}
3.36v_2'2 - 56v_2' = 0 \nonumber \end{align}
Solving the quadratic yields v2' to be 16.67 m/s. (Other solution of quadratic is 0)
If I plug that into the kinetic energy formula, I get the energy of body 2 to be Ek = 9726.1115 J.
What I find confusing is that the solution of the problem in the book says ΔE = 24.3J which to me, doesn't make sense.
The problem asks for the amount of energy transferred from body 1 to body 2, shouldn't that amount be roughly the same, the collision is elastic.
Any help would be much appreciated.
I assumed I was supposed to find the amount of kinetic energy body 2 receives after contact, assuming the collision is central, body 1 will be at rest after the collision.
I started by using the equation for conservation of momentum:
\begin{align}
m_1v_1 = m_1v_1' + m_2v_2' \\
50 * 20 = 50v_1' + 70 v_2' \nonumber \end{align}
Then kinetic energy:
\begin{align}
m_1v_1^2 = m_1v_1'^2 + m_2v_2'^2 \\
50 * 400 = 50v_1'^2 + 70v_2'^2 \nonumber \end{align}
From the first equation, $$v_1' = \frac{1000 - 70v_2'}{50} = 20 - 1.4v2'$$
Which was then substituted into the kinetic energy equation:
\begin{align}
20000 = 50(20 - 1.4v_2')^2 + 70v_2'^2 \nonumber \\
20000 = 50(400 - 56v_2' + 1.96v_2'^2) + 70v_2'^2 \nonumber \end{align}
After dividing everything by 50 and sorting everything out:
\begin{align}
3.36v_2'2 - 56v_2' = 0 \nonumber \end{align}
Solving the quadratic yields v2' to be 16.67 m/s. (Other solution of quadratic is 0)
If I plug that into the kinetic energy formula, I get the energy of body 2 to be Ek = 9726.1115 J.
What I find confusing is that the solution of the problem in the book says ΔE = 24.3J which to me, doesn't make sense.
The problem asks for the amount of energy transferred from body 1 to body 2, shouldn't that amount be roughly the same, the collision is elastic.
Any help would be much appreciated.
Last edited: