Confusion regarding the $\partial_{\mu}$ operator

Click For Summary
SUMMARY

The forum discussion centers on deriving the Klein-Gordon equation from the Lagrangian density $$\mathcal{L} = \frac{1}{2}(\partial_{\mu} \phi)^2 - \frac{1}{2}m^2 \phi^2$$. Participants clarify the use of the partial derivative operator $$\partial_{\mu}$$ and its implications in the context of covariant and contravariant indices. The correct formulation involves recognizing that the terms $$\partial_{t}\partial^{t} \phi$$ and $$\partial_{x}\partial^{x} \phi$$ do not carry opposite signs, as the metric signature affects the overall expression. The final expression for the Lagrangian is confirmed as $$\mathcal{L} = \frac{1}{2}g^{\mu \alpha} (\partial_{\mu} \phi)(\partial_{\alpha} \phi) - \frac{1}{2}m^{2} \phi^{2}$$.

PREREQUISITES
  • Understanding of Lagrangian mechanics and field theory.
  • Familiarity with covariant and contravariant indices in tensor calculus.
  • Knowledge of the Klein-Gordon equation and its derivation.
  • Proficiency in manipulating partial derivatives and metric tensors.
NEXT STEPS
  • Study the derivation of the Klein-Gordon equation from first principles.
  • Learn about the implications of metric signatures in relativistic physics.
  • Explore tensor calculus, focusing on covariant and contravariant transformations.
  • Investigate the role of the Lagrangian in classical and quantum field theories.
USEFUL FOR

Physicists, particularly those specializing in quantum field theory, students of theoretical physics, and researchers working on relativistic equations and their applications.

saadhusayn
Messages
17
Reaction score
1
I'm trying to derive the Klein Gordon equation from the Lagrangian:

$$ \mathcal{L} = \frac{1}{2}(\partial_{\mu} \phi)^2 - \frac{1}{2}m^2 \phi^2$$

$$\partial_{\mu}\Bigg(\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)}\Bigg) = \partial_{t}\Bigg(\frac{\partial \mathcal{L}}{\partial (\partial_{t} \phi)}\Bigg) + \partial_{x}\Bigg(\frac{\partial \mathcal{L}}{\partial (\partial_{x} \phi)}\Bigg)$$

But if
$$ \frac{\partial \mathcal{L}}{\partial (\partial_{t} \phi)} = \partial_{t} \phi = \partial^{t} \phi$$
And
$$ \frac{\partial \mathcal{L}}{\partial (\partial_{x} \phi)} = -\partial_{x} \phi = \partial^{x} \phi$$
Then
$$\partial_{\mu}\Bigg(\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)}\Bigg) = \partial_{t} \partial^{t} \phi + \partial_{x} \partial^{x} \phi$$
We seem to missing a minus sign here. Where's the mistake? I'm supposed to get

$$ \partial_{\mu}\partial^{\mu}\phi$$ for this term.
 
Physics news on Phys.org
saadhusayn said:
I'm trying to derive the Klein Gordon equation from the Lagrangian:

$$ \mathcal{L} = \frac{1}{2}(\partial_{\mu} \phi)^2 - \frac{1}{2}m^2 \phi^2$$

What does "##\frac{1}{2}(\partial_{\mu} \phi)^2##" mean?

Also, why are you splitting things into time and space components?
 
George Jones said:
What does "##\frac{1}{2}(\partial_{\mu} \phi)^2##" mean?

Also, why are you splitting things into time and space components?

$$ \frac{1}{2}(\partial_{\mu} \phi)^2 = \frac{1}{2}(\partial_{\mu} \phi)(\partial^{\mu} \phi) $$
 
saadhusayn said:
$$ \frac{1}{2}(\partial_{\mu} \phi)^2 = \frac{1}{2}(\partial_{\mu} \phi)(\partial^{\mu} \phi) $$

and
$$\left(\partial_{\mu} \phi)(\partial^{\mu} \phi\right) = g^{\mu \alpha} \left(\partial_{\mu} \phi)(\partial_{\alpha} \phi\right)$$

Now, find
$$\frac{\partial \mathcal{L}}{\partial (\partial_{\beta} \phi)}.$$

Note that I introduced a new index ##\beta##, because an index different than the dummy summation indices ##\mu## and ##\alpha## is needed.
 
George Jones said:
and
$$\left(\partial_{\mu} \phi)(\partial^{\mu} \phi\right) = g^{\mu \alpha} \left(\partial_{\mu} \phi)(\partial_{\alpha} \phi\right)$$

Now, find
$$\frac{\partial \mathcal{L}}{\partial (\partial_{\beta} \phi)}.$$

Note that I introduced a new index ##\beta##, because an index different than the dummy summation indices ##\mu## and ##\alpha## is needed.

Thank you. Is this correct?
$$ \mathcal{L} =\frac{1}{2}g^{\mu \alpha} (\partial_{\mu} \phi)(\partial_{\alpha} \phi) - \frac{1}{2}m^{2} \phi^{2}$$
So
$$\frac{\partial \mathcal{L}}{\partial (\partial_{\beta} \phi)} = \frac{1}{2}g^{\mu\alpha}(\partial_{\mu} \phi \delta^{\alpha}_{\beta} + \partial_{\alpha} \phi \delta^{\beta}_{\mu})$$
Hence,
$$\partial_{\beta}\frac{\partial \mathcal{L}}{\partial (\partial_{\beta} \phi)} = \frac{1}{2}\partial_{\beta}(g^{\mu \beta} \partial_{\mu} \phi + g^{\beta \alpha} \partial_{\alpha} \phi)$$
$$\partial_{\beta}\frac{\partial \mathcal{L}}{\partial (\partial_{\beta} \phi)} = \frac{1}{2}(\partial^{\mu}\partial_{\mu} + \partial^{\alpha}\partial_{\alpha}) $$
Since the first and second terms are the same, we can get rid of the half. And thus
$$ \partial_{\beta}\frac{\partial \mathcal{L}}{\partial (\partial_{\beta} \phi)} = \partial^{\mu}\partial_{\mu}$$
 
I haven't had a chance to look really closely (I will though)

saadhusayn said:
Thank you. Is this correct?
$$ \mathcal{L} =\frac{1}{2}g^{\mu \alpha} (\partial_{\mu} \phi)(\partial_{\alpha} \phi) - \frac{1}{2}m^{2} \phi^{2}$$
So
$$\frac{\partial \mathcal{L}}{\partial (\partial_{\beta} \phi)} = \frac{1}{2}g^{\mu\alpha}(\partial_{\mu} \phi \delta^{\alpha}_{\beta} + \partial_{\alpha} \phi \delta^{\beta}_{\mu})$$

There is a small mistake in the placement of indices in the first term on the right side of the second equation.

From the original post:

saadhusayn said:
Then
$$\partial_{\mu}\Bigg(\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)}\Bigg) = \partial_{t} \partial^{t} \phi + \partial_{x} \partial^{x} \phi$$
We seem to missing a minus sign here. Where's the mistake? I'm supposed to get

$$ \partial_{\mu}\partial^{\mu}\phi$$ for this term.

Now that I look more closely, I don't see a missing minus sign.
 
George Jones said:
I haven't had a chance to look really closely (I will though)
There is a small mistake in the placement of indices in the first term on the right side of the second equation.

From the original post:
Now that I look more closely, I don't see a missing minus sign.

The ##\mu## is contravariant and the ##\beta ## covariant, right?

Shouldn't $$ \partial_{x}\partial^{x}$$ and $$ \partial_{t}\partial^{t}$$ have opposite signs, since we are working with four vectors?
 
saadhusayn said:
The ##\mu## is contravariant and the ##\beta ## covariant, right?

In the first term on the right side, the ##\delta^\alpha_\beta## should be ##\delta^\beta_\alpha##. Since the summation index ##\alpha## is upstairs on the ##g^{\mu \alpha}## and downstairs on ##\partial_\alpha \phi##, it must be downstairs in the ##\delta##; roughly, since the the index ##\beta## is downstairs in the "denominator" of
$$\frac{\partial \mathcal{L}}{\partial (\partial_{\beta} \phi)},$$
##\beta## should be upstairs in the ##\delta##.

saadhusayn said:
Shouldn't $$ \partial_{x}\partial^{x}$$ and $$ \partial_{t}\partial^{t}$$ have opposite signs, since we are working with four vectors?

No. Remember,
$$A_\mu A^\mu = A_0 A^0 + A_1 A^1 + A_2 A^2 + A_3 A^3 = A^0 A^0 - A^1 A^1 - A^2 A^2 - A^3 A^3.$$
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 0 ·
Replies
0
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
474
  • · Replies 4 ·
Replies
4
Views
1K