Conjecture about Dirichlet series.

mhill
Messages
180
Reaction score
1
Hi, i hope it is not a crack theory

i had the idea when reading Ramanujan resummation, i believe that for a Dirichlet series which converges for Re (s) > a , with a a positive real number then we can obtain a regularized sum of the divergent series in the form:

\sum_{n >1}a_{n}n^{-s}- C(s-a)^{b}

with C, a and b real numbers , in case a_n are all 1 we recover the result

\sum_{n >1}n^{-s}- (s-1)^{-1}

however i believe that 'Ramanujan resummation of series' given by

\sum_{n >1}a_{n}n^{-s}-\int_{1}^{\infty}a(x)x^{-s}

must be satisfied no matter what kind of numerical series is.
 
Physics news on Phys.org
I think you're saying that the tail integral which is characteristic of Ramanujan resummation can be put in the form c(s-a)^b always for a, b, c constants. However can it be shown that the integral will evaluate in the given form always?
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top