Connecting the Keystone Equation and Derivatives

  • Context: MHB 
  • Thread starter Thread starter jedson303
  • Start date Start date
  • Tags Tags
    Derivatives
Click For Summary

Discussion Overview

The discussion revolves around the connection between the keystone equation of calculus, particularly in relation to derivatives, and the methods used to compute them. Participants explore the conceptual underpinnings of calculus, the transition from theoretical limits to practical derivative calculations, and the implications of these methods for understanding mathematical functions.

Discussion Character

  • Exploratory
  • Technical explanation
  • Conceptual clarification
  • Debate/contested
  • Mathematical reasoning

Main Points Raised

  • One participant expresses confusion about the connection between the keystone formula of calculus and the simpler method of finding derivatives by reducing exponents.
  • Another participant explains the process of using the keystone formula to derive the derivative of a function, providing a detailed algebraic breakdown.
  • A participant references a blog by Tim Gowers that discusses related concepts, indicating a broader context for the discussion.
  • One participant acknowledges understanding the connection after an explanation, suggesting that the "tricks" of calculus are logically derived from foundational principles.
  • Another participant attempts to generalize the derivative process for functions of the form \( f(x) = kx^n \), detailing the steps involved in the limit process.
  • Several participants discuss the importance of understanding the underlying principles rather than just applying rules, with one noting the significance of the Binomial Theorem in the calculations.
  • There is a mention of reviewing infinite sequences and summation notations to better grasp the calculations involved in deriving derivatives.

Areas of Agreement / Disagreement

Participants generally agree on the importance of understanding the connection between the keystone formula and derivative calculations. However, there is no consensus on the best approach to teaching or understanding these concepts, as some express confusion while others feel they are beginning to grasp the material.

Contextual Notes

Some participants express uncertainty about specific mathematical concepts, such as the Binomial Theorem, and how they relate to the calculations being discussed. There are also references to the need for foundational knowledge in sequences and summation notations, indicating potential gaps in understanding.

jedson303
Messages
11
Reaction score
0
Here's a question. This formula seems to be the keystone of calculus.

View attachment 644That seems to be what the calculus books say, and it makes sense to me, as a rank beginner. This equation is what makes the seeming magic of defining the slope of a dimensionless point on a curved slope possible. And doing that seems to be the major hurdle to opening up things for a calculus. But almost immediatly we are taught to make derivatives by a totally different method -- reducing the exponant by one, etc. So that, for exmple 2x^3 becomes 6x^2 etc. Well, that is of course lots easier. But where is the connection? How does one get from that magical limits equation (which shows how it really does work) to the the cheap trick? (Not that I am necessarily against cheap tricks.)
 

Attachments

  • limit.jpg
    limit.jpg
    4 KB · Views: 106
  • limit.jpg
    limit.jpg
    8 KB · Views: 94
Physics news on Phys.org
jedson303 said:
Here's a question. This formula seems to be the keystone of calculus.

View attachment 644That seems to be what the calculus books say, and it makes sense to me, as a rank beginner. This equation is what makes the seeming magic of defining the slope of a dimensionless point on a curved slope possible. And doing that seems to be the major hurdle to opening up things for a calculus. But almost immediatly we are taught to make derivatives by a totally different method -- reducing the exponant by one, etc. So that, for exmple 2x^3 becomes 6x^2 etc. Well, that is of course lots easier. But where is the connection? How does one get from that magical limits equation (which shows how it really does work) to the the cheap trick? (Not that I am necessarily against cheap tricks.)
That is an excellent question, and shows that you are thinking in the right way for a mathematician! Too often, calculus is taught as though it is just a box of tricks, when in fact these "tricks" follow logically from the definitions.

Take your example of the function $f(x) = 2x^3$. If you apply the "keystone" formula, then the derivative of this function at the point $x=a$ is $$f'(a) = \lim_{h\to 0}\frac{f(a+h)-f(a)}{h} = \lim_{h\to 0}\frac{2(a+h)^3 - 2a^3}{h}.$$ Now you have to do a bit of algebra, to calculate that $2(a+h)^3 = 2a^3 + 6a^2h+6ah^2+h^3.$ It follows that $$\frac{2(a+h)^3 - 2a^3}h = \frac{6a^2h + 6ah^2 + h^3}h = 6a^2 + 6ah + h^2.$$ Then as $h\to0$, the last two terms in that expression go to $0$ and you see that $$\lim_{h\to0}6a^2 + 6ah + h^2 = 6a^2.$$ So the derivative of $6x^3$ at $x=a$ is $6a^2.$ This is usually written in an abbreviated form by saying that the derivative of $6x^3$ is $6x^2.$
 
Last edited:
Tim Gower has something to say about this on his blog:

http://gowers.wordpress.com/2012/11/20/what-maths-a-level-doesnt-necessarily-give-you/

.

Moderator edit: This interesting blog sparked interest in another discussion, which I have moved http://www.mathhelpboards.com/f9/counter-intuitive-phenomena-math-physics-3637/ in order to keep this discussion on topic.
 
Last edited by a moderator:
OK, Opalg. I see how that works. It does connect. Thanks.
 
Last edited by a moderator:
jedson303 said:
Here's a question. This formula seems to be the keystone of calculus.

View attachment 644That seems to be what the calculus books say, and it makes sense to me, as a rank beginner. This equation is what makes the seeming magic of defining the slope of a dimensionless point on a curved slope possible. And doing that seems to be the major hurdle to opening up things for a calculus. But almost immediatly we are taught to make derivatives by a totally different method -- reducing the exponant by one, etc. So that, for exmple 2x^3 becomes 6x^2 etc. Well, that is of course lots easier. But where is the connection? How does one get from that magical limits equation (which shows how it really does work) to the the cheap trick? (Not that I am necessarily against cheap tricks.)

Let's say we want to find the derivative of $\displaystyle \begin{align*} f(x) = k\,x^n \end{align*}$, where k is a constant and n is a positive integer. Then we have

\displaystyle \begin{align*} f'(x) &= \lim_{h \to 0}\frac{f(x + h) - f(x)}{h} \\ &= \lim_{h \to 0}\frac{k\left( x+ h \right)^n - k\,x^n}{h} \\ &= \lim_{h \to 0}\frac{ k \sum_{r = 0}^n{ \left[ {n\choose{r}} x^{n-r} h^r \right] } - k\,x^n }{h} \\ &= \lim_{h \to 0}\frac{k\,x^n + k\sum_{r = 1}^n{\left[ {n\choose{r}} x^{n-r} h^r \right] } - k\,x^n }{h} \\ &= \lim_{h \to 0}\frac{ k\sum_{r = 1}^n{ \left[ {n\choose{r}} x^{n-r} h^r \right] } }{h} \\ &= \lim_{h \to 0} k\sum_{r = 0}^n{ \left[ {n\choose{r}} x^{n-r} h^{r-1} \right] } \\ &= \lim_{h \to 0}\left\{ n\,k\,x^{n-1} + k\sum_{r = 2}^n{ \left[ {n\choose{r}}x^{n-r}h^{r-1} \right] } \right\} \\ &= n\,k\,x^{n-1} \end{align*}

The result easily extends to other types of powers, but might need knowledge of the chain rule or other rules.
 
I'm going back to review the Infinite sequences and summation notations, to better follow all the calculations. But I can see what you are doing. This way you don't just prove the validity of a function with a specific value, but show why this holds for all values of that function. How, in other words, it can be deduced from the "keystone" formula, and then used as a valid rule. Which is what I asked. Interesting.

Jedson
 
jedson303 said:
I'm going back to review the Infinite sequences and summation notations, to better follow all the calculations. But I can see what you are doing. This way you don't just prove the validity of a function with a specific value, but show why this holds for all values of that function. How, in other words, it can be deduced from the "keystone" formula, and then used as a valid rule. Which is what I asked. Interesting.

Jedson

It's not an infinite sequence, or an infinite series for that matter. It's a particular finite series called the Binomial Theorem or Binomial Expansion.
 
I guess I didn't understand what you were doing. I'll review the binomal therum and see if I can follow the computation. Then try to understand what it actually means.
jedson
 

Similar threads

Replies
14
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 55 ·
2
Replies
55
Views
6K
  • · Replies 12 ·
Replies
12
Views
5K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
12
Views
3K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 8 ·
Replies
8
Views
4K