Conservation of Momentum of Rocket Exploding after Takeoff

Click For Summary
SUMMARY

The discussion centers on the conservation of momentum in a rocket explosion scenario. Participants calculated the final speed before the explosion as 20.0 m/s and determined the distance traveled by the lighter piece post-explosion to be 510 m. The masses were established as m1 = 500 kg and m2 = 1000 kg, with the ratio being critical for solving the problem. The direction of the heavier portion post-explosion was confirmed to be downward.

PREREQUISITES
  • Understanding of conservation of momentum principles
  • Familiarity with kinematic equations, particularly equation 3 and equation 4
  • Basic knowledge of mass ratios in physics problems
  • Ability to analyze motion in vertical directions
NEXT STEPS
  • Study the application of conservation of momentum in explosive scenarios
  • Learn how to derive and apply kinematic equations in different contexts
  • Explore the implications of mass ratios on motion and velocity
  • Investigate the effects of gravity on projectile motion post-explosion
USEFUL FOR

Physics students, educators, and anyone interested in understanding the dynamics of explosive events and momentum conservation in mechanical systems.

hisiks
Messages
6
Reaction score
0
Homework Statement
A 1500 kg weather rocket accelerates upward at 10.0 m/s^2. It explodes 2.00 s after liftoff and
breaks into fragments. One piece is twice as massive as the other. Photos reveal that the
lighter fragment travelled straight up and reached a maximum height of 530 m. What was the
speed and direction of the heavier fragment just after the explosion?
Relevant Equations
pi = pf
m1v1i + m2v1i = m1v2f + m2v2f
vf = vi +at
d = vit + 1/2at^2
vf^2 = vi2 + 2ad
PEi + KEi = PEf + KEf
-Solved for vf using equation 3 to get 20.0m/s (speed before explosion) then solved for the distance to reach the explosion using equation 4, to get 20.0m, which felt wrong having the same numbers but that may just be coincidence.
-Found the distance travelled of the lighter piece using 530m - 20.0m to get 510m travelled after the explosion.
-Stuck trying to use equation 6 to find inital velocity.
Stuck with the remainder of the question.

EDIT: Found masses using Mtotal = m1 + m2, & m2 = 2m1, thefore m1 = 500kg and m2 = 1000kg.
 
Last edited:
Physics news on Phys.org
hisiks said:
that may just be coincidence
It's because the time is 2 seconds and ##\frac 122^2=2##.
hisiks said:
Found masses
The actual masses are irrelevant, unless another part of the question asked for them. The given ratio is all you need.
What did you get for the speed and direction of the heavier portion?
 
haruspex said:
It's because the time is 2 seconds and ##\frac 122^2=2##.

The actual masses are irrelevant, unless another part of the question asked for them. The given ratio is all you need.
What did you get for the speed and direction of the heavier portion?
This is what I came up with for a speed, however I'm not particularly confident in it. As for the direction, would it just be down?
 

Attachments

  • image.jpg
    image.jpg
    37.8 KB · Views: 153
hisiks said:
This is what I came up with for a speed, however I'm not particularly confident in it. As for the direction, would it just be down?
Looks right.
 
haruspex said:
Looks right.
Would you agree the direction would just be down as well?
 
hisiks said:
Would you agree the direction would just be down as well?
yes
 

Similar threads

  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
905
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 16 ·
Replies
16
Views
4K
  • · Replies 11 ·
Replies
11
Views
2K