Constant of proportionality in probability of superposition of states

Click For Summary
SUMMARY

The discussion centers on the constant of proportionality in quantum mechanics, specifically in the context of measuring probabilities of superposition states. It establishes that the probabilities Pa and Pb for measuring states |A> and |B> are given by Pa = |α|^2/(|α|^2 + |β|^2) and Pb = |β|^2/(|α|^2 + |β|^2), where k = 1/(|α|^2 + |β|^2) serves as the constant of proportionality. The participants confirm that this constant must be the same for both probabilities to maintain the integrity of quantum measurements, as differing constants would lead to ambiguity in the state representation. The discussion also touches on the normalization of states and the implications of non-normalized states in quantum mechanics.

PREREQUISITES
  • Understanding of quantum mechanics postulates, particularly the third postulate regarding observables.
  • Familiarity with the concepts of superposition and eigenstates in quantum systems.
  • Knowledge of probability calculations in quantum mechanics, including normalization of states.
  • Basic understanding of Hermitian operators and their role in quantum measurements.
NEXT STEPS
  • Study the implications of normalization in quantum states and how it affects probability calculations.
  • Explore the role of Hermitian operators in quantum mechanics and their relationship with observables.
  • Learn about the mathematical formulation of quantum mechanics, focusing on inner product spaces and projectors.
  • Investigate the concept of degeneracy in quantum states and its impact on measurement outcomes.
USEFUL FOR

Quantum physicists, students of quantum mechanics, and researchers interested in the mathematical foundations of quantum theory and probability measurements in superposition states.

Phys12
Messages
351
Reaction score
42
Homework Statement
Assume that the measurement of the energy on a state |A> always yields the value 'a' and the measurement of the energy on a state |B> always yields the value 'b'. Now consider a quantum system in the superposition state (1+2i)|A> + (1-i)|B>. What are the probabilities Pa and Pb to measure energy and 'a' and 'b' respectively?
Relevant Equations
For a state Ψ = α|A> + β|B>;
Pa ∝ |α|^2
and Pb ∝ |β|^2
Using the fact that
Pa ∝ |α|^2 and Pb ∝ |β|^2, we get:
Pa = k|α|^2 and Pb = k|β|^2

Since the probability of measuring the two states must add up to 1, we have Pa + Pb = 1 => k = 1/(|α|^2 + |β|^2). Substituting this in Pa and Pb, we get:

Pa = |α|^2/(|α|^2 + |β|^2)
and Pb = |β|^2/(|α|^2 + |β|^2)

And using these equations, I could get the correct answer. However, I assumed that the constant of proportionality is the same for calculating Pa and Pb and in fact, it is. But I am not sure why that is the case...why do they have to be the same?
 
  • Like
Likes   Reactions: PeroK
Physics news on Phys.org
Quantum Mechanics is based in some postulates, one of those (usually called the 3rd postulate) says that given an observable ##A## (I will assume that has no degeneracy, that is your case if we assume ##a\neq b##) then the probability of measure a given output ##a_i## with corresponding eigenstate ##\left|\psi_i\right>## is $$\frac{\left|\left<\psi_i|\psi\right>\right|^2}{\left<\psi|\psi\right>}$$. Note that this "constant of proportionality" ##\left|\left<\psi|\psi\right>\right|^{-1}## does not depend on what outcome you measure.
 
Last edited:
Gaussian97 said:
Quantum Mechanics is based in some postulates, one of those (usually called the 3rd postulate) says that given an observable ##A## (I will assume that has no degeneracy, that is your case if we assume ##a\neq b##) then the probability of measure a given output ##a_i## with corresponding eigenstate ##\left|\psi_i\right>## is $$\left|\frac{\left<\psi_i|\psi\right>}{\left<\psi|\psi\right>}\right|^2$$. Note that this "constant of proportionality" ##\left|\left<\psi|\psi\right>\right|^{-2}## does not depend on what outcome you measure.
Oh, I see. So the | ⟨ψ|ψ⟩|^2 term here is equivalent to (|α|^2 + |β|^2) in my expressions? And that's just because ψ is a superposition of eigenstates with coefficients alpha and beta. Is that correct?
 
The reason why the ##\left|\left<\psi\left|\right.\psi\right>\right|^2## is needed is that the given state ##\left|\right.\psi\left.\right>## is not normalized to 1.
 
  • Like
Likes   Reactions: PeroK
Phys12 said:
Oh, I see. So the | ⟨ψ|ψ⟩|^2 term here is equivalent to (|α|^2 + |β|^2) in my expressions? And that's just because ψ is a superposition of eigenstates with coefficients alpha and beta. Is that correct?

Exact, again one of the postulates of QM is that any observable ##A## is described by a hermitic operator, is not difficult to show that then the eigenstates of ##A## are orthogonal, then:
$$\left<\psi|\psi\right>=\left|\alpha\right|^2\left<A|A\right>+\alpha^*\beta\underbrace{\left<A|B\right>}_{0}+\alpha\beta^*\underbrace{\left<B|A\right>}_{0}+\left|\beta\right|^2\left<B|B\right>=\left|\alpha\right|^2+\left|\beta\right|^2$$
 
  • Like
Likes   Reactions: PeroK and Phys12
Phys12 said:
Problem Statement: Assume that the measurement of the energy on a state |A> always yields the value 'a' and the measurement of the energy on a state |B> always yields the value 'b'. Now consider a quantum system in the superposition state (1+2i)|A> + (1-i)|B>. What are the probabilities Pa and Pb to measure energy and 'a' and 'b' respectively?
Relevant Equations: For a state Ψ = α|A> + β|B>;
Pa ∝ |α|^2
and Pb ∝ |β|^2

Using the fact that
Pa ∝ |α|^2 and Pb ∝ |β|^2, we get:
Pa = k|α|^2 and Pb = k|β|^2

Since the probability of measuring the two states must add up to 1, we have Pa + Pb = 1 => k = 1/(|α|^2 + |β|^2). Substituting this in Pa and Pb, we get:

Pa = |α|^2/(|α|^2 + |β|^2)
and Pb = |β|^2/(|α|^2 + |β|^2)

And using these equations, I could get the correct answer. However, I assumed that the constant of proportionality is the same for calculating Pa and Pb and in fact, it is. But I am not sure why that is the case...why do they have to be the same?
If the constant of proportionality could be different for A and B, then the state you were given would be completely ambiguous and meaningless.

In an extreme case you could have ##k_B = 0## and then you'd have simply state A.
 
Gaussian97 said:
Exact, again one of the postulates of QM is that any observable ##A## is described by a hermitic operator, is not difficult to show that then the eigenstates of ##A## are orthogonal, then:
$$\left<\psi|\psi\right>=\left|\alpha\right|^2\left<A|A\right>+\alpha^*\beta\underbrace{\left<A|B\right>}_{0}+\alpha\beta^*\underbrace{\left<B|A\right>}_{0}+\left|\beta\right|^2\left<B|B\right>=\left|\alpha\right|^2+\left|\beta\right|^2$$
Although, if you allow ##\psi## to be not normalized, then how do know ##A## and ##B## are normalized?
 
PeroK said:
Although, if you allow ##\psi## to be not normalized, then how do know ##A## and ##B## are normalized?
True, but this does not change the important point, that is that ##k=\left<\psi|\psi\right>^{-1}## doesn't depend on what outcome you get when measuring an observable. Also, I have used this inner product notation because it's the easiest and we don't have degeneracy, in general, you write the probabilities in terms of the projectors so we don't care about the norm of the basis.
 
Gaussian97 said:
True, but this does not change the important point, that is that ##k=\left<\psi|\psi\right>^{-1}## doesn't depend on what outcome you get when measuring an observable. Also, I have used this inner product notation because it's the easiest and we don't have degeneracy, in general, you write the probabilities in terms of the projectors so we don't care about the norm of the basis.
If it doesn't say A and B are normalized then the question is ill-posed. Suppose, for example, that ##A = 2B##?

I would say the question just looks wrong with those coefficients. ##\psi## is not a valid state.

In any case, how can you assume that ##\langle A|A \rangle = 1## if states are not, by definition, normalized?
 
  • #10
Well, if ##\left|A\right>## and ##\left|B\right>## are not orthogonal, then the question doesn't make sense in any case, even if they are normalized, since in this case, the eigenvalues must be the same and the probability of getting anything is trivially 1. But ##\left|\psi\right>## would still be a valid state (if you consider non-normalized states valid).

In general, if ##\left|A\right>## is not normalized you simply compute the probability with the projector, i.e. a Hermitian ##P_A##operator such that ##P_A^2=P_A## and ##P_A\left|A\right>=\left|A\right>##. Then the probability of measuring the outcome ##a## is ##\frac{\left\|P_A\left|\psi\right>\right\|^2}{\left<\psi|\psi\right>}##. Here you don't need to supose ##\left|A\right>## normalized. Indeed, if ##a## is a non-degenerated eigenvalue then $$P_A=\frac{\left|A\right>\left<A\right|}{\left<A|A\right>}$$
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
1
Views
2K
Replies
5
Views
2K
  • · Replies 26 ·
Replies
26
Views
4K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
4K