I Constraints of a mechanical system

AI Thread Summary
The discussion centers on understanding the degrees of freedom in mechanical systems, particularly when involving continuous bodies like wires. It highlights the challenge of defining constraints in systems with both discrete particles and continuous elements, emphasizing that a wire can be treated as a time-dependent geometrical constraint. The participants explore how to determine degrees of freedom by identifying independent coordinates and equations, noting that continuous bodies often require field descriptions. The conversation also touches on the simplification of constraints in cylindrical coordinates and the unique case of rigid bodies having six degrees of freedom. Overall, the complexities of modeling mechanical systems with various constraints are thoroughly examined.
Ahmed1029
Messages
109
Reaction score
40
I'm studying theoretical mechanics and I kind of find the notion of a "mechanical system" very slippery, especially when it comes to constraints. Take an example :
Screenshot_2022-09-28-10-19-40-89_e2d5b3f32b79de1d45acd1fad96fbb0f.jpg

I know that when a system consists of N particles and p constraints, it has 3N-p degrees of freedom; this is the definition. Then I come across something like this example in the picture above, in which I have a wire which includes an infinite number of particles, and in the solution it's completely ignored. Here there are 2 constraints and the auther treated the whole setup as if there is only one particle while the wire is completely ignored, thus the system has one degree if freedom because 3(1)-2=1
In general, how do I know the number of degrees of freedom of a "mechanical system" that is not just made of ordinary accumilatios of discrete particles?
 
Physics news on Phys.org
  • Like
Likes vanhees71 and Ahmed1029
Baluncore said:
The wire is a hypothetical perfect guideline for the sliding bead.
Only the position of the bead on the wire is being considered.
The model is applicable to this real situation.
https://en.wikipedia.org/wiki/Liquid-mirror_telescope
Oh! So it's considered a time dependent geometrical constraint. What about real wires though? Is it right to say that " When I can specify completely the state of a system just by the positions of the discrete particles, then I should ignore any other continuous body as a mere time dependent geometrical constraint"?
 
The constraint is a bit inconveniently defined. In cylindrical coordinates it's much simpler and valid for any time,
$$z=\alpha \rho^2.$$
Now first parametrize the position vector (wrt. the inertial frame of reference) of the particle on the parabolic wire and then you can simply put the entire problem into the Lagrangian machinery.
 
vanhees71 said:
The constraint is a bit inconveniently defined. In cylindrical coordinates it's much simpler and valid for any time,
$$z=\alpha \rho^2.$$
Now first parametrize the position vector (wrt. the inertial frame of reference) of the particle on the parabolic wire and then you can simply put the entire problem into the Lagrangian machinery.
Suppose I don't know which generalized coordinates I should choose to specity the system, but I nevertheless want to know the number of degrees of freedom of the system. In case of discrete particles it's easy, you just find independent equations relating the coordinates to each other until there is no more ( which is done by inspection), then subtract from 3N the number of constraints, where N is the number of particles. Suppose now I have not just discrete particles, but also continuous bodies: How do I know the number of degrees of freedom for sure? My guess is to find any number of coordinates that specify the whole system completely, find the maximum number of equations relating them to each other, and subtract the number of independent equations from the number of original arbitrary coordinates. Is this right.
 
That sounds right. A continuous body usually has to be described by fields (e.g., density, velocity, pressure for a fluid). An exception is the rigid body, which has only 6 degrees of freedom (3 position-vector coordinates to any fixed point within the body and 3 Euler angles to describe the rotation of a body-fixed Cartesian coordinate system wrt. a space-fixed Cartesian one). It's a good exercise to derive this with continuum-mechanical methods.
 
  • Like
Likes Orodruin and Ahmed1029
The rope is tied into the person (the load of 200 pounds) and the rope goes up from the person to a fixed pulley and back down to his hands. He hauls the rope to suspend himself in the air. What is the mechanical advantage of the system? The person will indeed only have to lift half of his body weight (roughly 100 pounds) because he now lessened the load by that same amount. This APPEARS to be a 2:1 because he can hold himself with half the force, but my question is: is that mechanical...
Some physics textbook writer told me that Newton's first law applies only on bodies that feel no interactions at all. He said that if a body is on rest or moves in constant velocity, there is no external force acting on it. But I have heard another form of the law that says the net force acting on a body must be zero. This means there is interactions involved after all. So which one is correct?
Let there be a person in a not yet optimally designed sled at h meters in height. Let this sled free fall but user can steer by tilting their body weight in the sled or by optimal sled shape design point it in some horizontal direction where it is wanted to go - in any horizontal direction but once picked fixed. How to calculate horizontal distance d achievable as function of height h. Thus what is f(h) = d. Put another way, imagine a helicopter rises to a height h, but then shuts off all...
Back
Top