Continued Fractions: Motivation and Applications

  • Context: MHB 
  • Thread starter Thread starter matqkks
  • Start date Start date
  • Tags Tags
    Fractions
Click For Summary

Discussion Overview

The discussion revolves around the introduction and applications of continued fractions, exploring their motivational aspects and real-life uses. Participants share their interests in continued fractions, particularly in relation to approximating constants like π, and delve into various mathematical properties and applications.

Discussion Character

  • Exploratory
  • Technical explanation
  • Conceptual clarification
  • Debate/contested
  • Mathematical reasoning
  • Experimental/applied

Main Points Raised

  • Some participants express fascination with how quickly continued fractions can approximate π using simple fractions, describing it as "magical."
  • Others challenge the notion of rapid approximation, suggesting that the convergence may not be as fast as claimed.
  • A participant points out that certain continued fractions lack a precise scheme, complicating autonomous computation.
  • Alternative continued fractions for π are proposed, including those that follow specific patterns.
  • One participant shares a personal experience where continued fractions were used in telecommunications to generate specific frequencies.
  • Another participant mentions that continued fractions are useful in solving Diophantine equations, such as Pell's equation.
  • A method for calculating square roots using continued fractions is described, highlighting the periodic nature of the resulting sequences.

Areas of Agreement / Disagreement

Participants express differing views on the rapidity of approximation of π by continued fractions, indicating a lack of consensus on this point. Additionally, while some applications are discussed, no single satisfactory answer to the original question about real-life applications has been universally accepted.

Contextual Notes

The discussion includes various mathematical techniques and examples, but some assumptions and dependencies on specific definitions remain unresolved. The effectiveness of continued fractions in practical applications is also subject to individual interpretation.

Who May Find This Useful

This discussion may be of interest to mathematicians, educators, and students exploring the properties and applications of continued fractions, as well as those involved in fields like telecommunications and number theory.

matqkks
Messages
283
Reaction score
6
What is the most motivating way to introduce continued fractions? Are there any real life applications of continued fractions?
 
Mathematics news on Phys.org
matqkks said:
What is the most motivating way to introduce continued fractions? Are there any real life applications of continued fractions?

The thing that made me interested in continued fractions, is how rapidly $\pi$ is approximated by it with simple fractions - made it seem magical!

\begin{array}{}
[3] &=& 3 &=& 3.00000000000000 \\
[3;7] &=& \frac{22}{7} &=& 3.14285714285714 \\
[3;7;15] &=& \frac{333}{106} &=& 3.14150943396226 \\
[3;7;15;1] &=& \frac{355}{113} &=& 3.14159292035398 \\
[3;7;15;1;292] &=& \frac{103993}{33102} &=& 3.14159265301190 \\
\pi &=& && 3.14159265358979
\end{array}
 
I like Serena said:
The thing that made me interested in continued fractions, is how rapidly $\pi$ is approximated by it with simple fractions - made it seem magical!

I'd think it is not at all very rapid. Each to his own, perhaps?
 
mathbalarka said:
I'd think it is not at all very rapid. Each to his own, perhaps?

The main drawback of the continued fraction [3; 7, 15, 1, 292, 1, 1, ...] is that the sequence doesn't follow a precise scheme, so that computation cannot proceed autonomously. The following continued fraction follow precise schemes...

$\displaystyle \pi = 3 + \frac{1}{6 + \frac{3^{2}}{6 + \frac{5^{2}}{6 + ...}}}\ (1)$

$\displaystyle \pi = \frac{4}{1 + \frac{1}{3 + \frac{2^{2}}{5 + \frac{3^{2}}{7+...}}}}\ (2)$

Kind regards

$\chi$ $\sigma$
 
chisigma said:
The main drawback of the continued fraction [3; 7, 15, 1, 292, 1, 1, ...] is that the sequence doesn't follow a precise scheme.

Right.

PS : I'd like to add another CF to your list :

$$1 + \frac{1^{2}}{2 + \frac{3^{2}}{2 + \frac{5^{2}}{2 + \frac{7^{2}}{2 + \cdots}}}}$$
 
Not to mention:
$$\varphi =1+\frac{1}{1+\frac{1}{1+\frac{1}{1+...}}}$$

$$\sqrt{2}=1+\frac{1}{2+\frac{1}{2+\frac{1}{2+...}}}$$

$$e=2+\frac{1}{1+\frac{1}{2+\frac{1}{1+...}}}=[2;1,2,1,1,4,1,1,6,1,1,8,...]$$
 
Uh, but they are not for calculating $\pi$ are they?
 
The OP never asked for specific numbers.
 
In the OP the following question has been proposed...

What is the most motivating way to introduce continued fractions?... Are there any real life applications of continued fractions?...

... and till now no satisfactory answer has been given. Regarding the possible use of CF for the computation of a constant like $\pi$ we can compare a series solution and a Cf solution. The series solution can be based on the following McLaurin expansion...

$\displaystyle \sin^{-1} x = x + \sum_{n=1}^{\infty} \frac{(2 n -1)!}{(2 n + 1)\ (2 n)!}\ x^{2 n + 1} (1)$

... and from (1) we derive...

$\displaystyle \pi = 3 + 6\ \sum_{n=1}^{\infty} \frac{(2 n -1)!}{2^{2 n + 1}\ (2 n + 1)\ (2 n)!}\ (2)$

One possible CF solution is...

$\displaystyle \pi = 3 + \frac{1}{6 + \frac{3^{2}}{6 + \frac{5^{2}}{6 + ...}}}\ (3)$

Which allows a more comfortable computation of $\pi$?... the (2) allows at each step to verify in some way the accuracy of computation and if necessary a further step can be done without problems. In the (3) the computation proceeds 'backward' in the sense that the last term is the first to be computed and to perform a further step the entire procedure must be repeated from the beginning... this way isn't comfortable!...

An example of application to CF to the 'real life' derives from my past professional experience. When I was involved in telecom equipment design it was not unusually to generate a 'funny frequency' like 84080 Hz frequency locked to a 'more conventional' frequency like 16000 Hz. In order to realize that it was necessary to implement a non integer frequency divider by something like $\frac{1051}{100}$ and the hardware scheme was directly derived by the CF expansion...

$\displaystyle \frac{1051}{100} = 11 - \frac{1}{2 + \frac{1}{25 - \frac{1}{2}}}\ (4)$

Kind regards

$\chi$ $\sigma$
 
  • #10
matqkks said:
What is the most motivating way to introduce continued fractions? Are there any real life applications of continued fractions?
It's not exactly a "real life" application, but continued fractions are a key tool in attacking Diophantine equations such as Pell's equation. See http://mathhelpboards.com/math-notes-49/pell-sequence-2905.html on that topic.
 
  • #11
Consider the quadratic equation:

$x^2 - bx - c = 0$, where $b,c$ are integers.

Elementary algebra shows that:

$x = b + \dfrac{c}{x} = b + \dfrac{c}{b + \frac{c}{x}} = b + \dfrac{c}{b + \frac{c}{b+\frac{c}{x}}} = \dots$

allowing any such equation to be "solved" by use of continued fractions.

One can use an adaptation of this to calculate $\sqrt{n}$:

First one determines $a_0 = \lfloor{\sqrt{n}}\rfloor$, and writes:

$\sqrt{n} = a_0 + \dfrac{1}{x_1}$.

Thus leads to:

$x_1 = \dfrac{1}{\sqrt{n} - m} = \dfrac{\sqrt{n} + a_0}{n - a_0^2}$

One then repeats this process using:

$a_1 = \lfloor{\dfrac{\sqrt{n} + a_0}{n - a_0^2}}\rfloor$ so that:

$x_1 = a_1 + \dfrac{1}{x_2}$, leading to the continued fraction:

$\sqrt{n} = a_0 + \dfrac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \frac{1}{a_4 + \dots}}}}$

It can be shown that the sequence $a_0,a_1,a_2,\dots$ is "eventually periodic" which means that square roots stand in the same relationship to continued fractions as rational numbers do to decimal expansions.
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
928
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 6 ·
Replies
6
Views
788
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 2 ·
Replies
2
Views
3K