Continuity equation conservation in a region S and local conservation

lys04
Messages
144
Reaction score
5
Homework Statement
What’s the differences between these two versions of the continuity equation? ##\frac{dq}{dt} =-\iint_S (\vec{J}. d\vec{S})## and ## \frac{\partial q}{\partial t} =-\nabla . \vec{J}##?
Relevant Equations
$$ \frac{dq}{dt}=-\iint_S (\vec{J}. d\vec{S})$$ $$ \frac{\partial q}{\partial t} =-\nabla . \vec{J}$$
Does ##\frac{dq}{dt}=-\iint_S \vec{J}.d\vec{S} ## correspond to conservation of some quantity q in a region with boundary S whereas ##\frac{\partial q}{\partial t} = - \nabla . \vec{J}## means that for any point in space the quantity q is conserved? Since the divergence measures how much of q is flowing out or in at any point.
 
Physics news on Phys.org
The "q"s in your two equations mean different things. In the differential form, ##\partial q / \partial t = -\nabla \cdot J##, the ##q## is the density of the quantity (i.e. dimensions of quantity / length^3). In the integral form, ##dQ/dt = -\int J \cdot dS##, the ##Q## is the total amount of quantity inside the region with boundary S. The link between them is the divergence theorem.
 
Oh ok, but is there a difference in the physical interpretations of the two?
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top