Undergrad Continuity of Green's function

Click For Summary
The discussion centers on the continuity of Green's function (G) and its derivative in a specific relation involving a limit as epsilon approaches zero. Participants agree that while G can be continuous, its derivative may need to be discontinuous at x = t to satisfy the equation, which some find arbitrary. A piecewise representation of G is suggested as a more natural approach, utilizing properties of the delta function to derive the necessary conditions. The conversation also touches on the complexities of inserting this piecewise function into the differential equation and the challenges of simplifying the resulting expressions. Ultimately, the participants emphasize the importance of correctly handling delta functions and their derivatives in the analysis.
Wledig
Messages
69
Reaction score
1
Why can't G and its derivative be continuous in the relation below?

$$p(x)\dfrac{dG}{dx} \Big|_{t-\epsilon}^{t+\epsilon} +\int_{t-\epsilon}^{t+\epsilon} q(x) \;G(x,t) dx = 1$$
 
Physics news on Phys.org
They can, but not if it is to hold as ##\epsilon \to 0##.
 
  • Like
Likes Wledig
Yes, I realized that. Both terms would vanish if that was the case, however the way this situation is avoided by letting dG/dx have a discontinuity at x = t seems rather arbitrary. Couldn't the same be accomplished by letting G have a discontinuity in t? I guess I just find a bit awkward to let G be continuous but not its derivative, not sure if this is a condition that should hold true.
 
Wledig said:
Couldn't the same be accomplished by letting G have a discontinuity in t?
No, that would not help. The integral would still go to zero.

Wledig said:
I guess I just find a bit awkward to let G be continuous but not its derivative, not sure if this is a condition that should hold true.
This is really not a strange thing. There are many examples of sich functions. For example ##f(x) = |x|##.

Still, I can relate to your worries and I also never liked this argument although it does its job in the end. My preferred argument, and the one I use in my book, is to write ##G## as a piecewise function ##G(x,x’) = \theta(x-x’)g_1(x) + \theta(x’-x)g_2(x)## and insert this into the differential equation using that ##\theta’## is a delta function. You will need some delta function properties, but once the smoke clears you will obtain exactly the same result.
 
  • Like
Likes Wledig
Orodruin said:
This is really not a strange thing. There are many examples of sich functions. For example f(x)=|x|f(x)=|x|f(x) = |x|.
You're right, I completely forgot this classic example.
Orodruin said:
Still, I can relate to your worries and I also never liked this argument although it does its job in the end. My preferred argument, and the one I use in my book, is to write GGG as a piecewise function G(x,x′)=θ(x−x′)g1(x)+θ(x′−x)g2(x)G(x,x′)=θ(x−x′)g1(x)+θ(x′−x)g2(x)G(x,x’) = \theta(x-x’)g_1(x) + \theta(x’-x)g_2(x) and insert this into the differential equation using that θ′θ′\theta’ is a delta function. You will need some delta function properties, but once the smoke clears you will obtain exactly the same result.
That's actually a much more natural way of thinking about the problem, since the derivative of the step function is Dirac's delta, we're just left with the boundary conditions. I just wonder how to reach the relation below from it though. $$ \lim_{\epsilon \rightarrow 0} \left( \dfrac{dG}{dx} \Big|_{x=t+\epsilon} - \dfrac{dG}{dx} \Big|_{x=t-\epsilon} \right) = \dfrac{1}{p(t)} $$
 
What do you get when you do the insertion into your differential equation?
 
Sorry, I'm confused. I tried inserting it into ##\dfrac{d}{dx}\left(p(x)\dfrac{dG}{dx}\right)+q(x)G=\delta(x-t)## but I got a pretty long expression in return that didn't seem like it could be simplified into anything that would help me reach the relation. Am I following your line of thought correctly? Maybe I misunderstood something.
 
Wledig said:
Am I following your line of thought correctly?
It is impossible to know that unless you actually show us what you got.
 
Alright, here's what I got:
$$ p[(g''_1 \theta(x-x') + 2g'_1 \delta(x-x') + g_1 \delta(x-x')') + (g''_2 \theta(x'-x) + 2g'_2 \delta(x'-x) + g_2 \delta(x'-x)')] + p'(g'_1 \theta(x-x') + g'_2\theta(x'-x) + g_1 \delta(x-x') + g_2 \delta(x'-x)) + q(g_1 \theta(x-x') + g_2\theta(x'-x)) = \delta(x-x')$$
Now, I looked it up that the derivative of the delta function is ##\frac{\delta}{x}## so I could substitute it there, but it doesn't seem to lead anywhere. I also thought about isolating ##\frac{dG}{dx}## and inserting in the other terms to come up with something, but that didn't seem to work either.
 
  • #10
The derivative of the ##\delta## is a separate distribution in and of itself. It does not really make sense to say that it is ##\delta/x##. Its exact properties are not important at the moment, but know that it is separate from the delta itself. Before you take the second derivative, note that ##f(x) \delta(x-x') = f(x') \delta(x-x')##. That will save you some annoying cross terms that are a bit tricky to handle. After that, start collecting terms with the same factors of ##\theta##, ##\delta##, or ##\delta'## and identify it with the corresponding terms on the right-hand side.
 
  • Like
Likes Wledig

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
854
  • · Replies 6 ·
Replies
6
Views
3K
Replies
6
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K