I Conventional description of the matter wave

George444fg
Messages
25
Reaction score
4
TL;DR Summary
Conventional description of the matter wave
I have been working on a relatively simple problem. Just take a quantum wave function for which a physical requirement is that an arbitrary displacement of x or an arbitrary shift of t should not alter the character of the wave, and I want to find the state function solution. A possible guess that works is sin(kx-wt)+acos(kx-wt). I found out that a=±i, and then I have to say which one corresponds to the convention. I said that it must be that γγ=i, because if it was -i, then the time derivative of the state function would have been negative, and using Schrodinger equation that would imply negative energy states. Am I right?
 
Physics news on Phys.org
Yes, you are correct. The convention that is usually used is that the wave function should have a positive energy, and so the time derivative of the wave function should be positive. Therefore, the coefficient of the cosine term must be +i in order for the wave function to satisfy this requirement.
 
I am not sure if this falls under classical physics or quantum physics or somewhere else (so feel free to put it in the right section), but is there any micro state of the universe one can think of which if evolved under the current laws of nature, inevitably results in outcomes such as a table levitating? That example is just a random one I decided to choose but I'm really asking about any event that would seem like a "miracle" to the ordinary person (i.e. any event that doesn't seem to...
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Back
Top