Conversion of microMolar DOC to ppm

  • Thread starter Thread starter Bacat
  • Start date Start date
Click For Summary
SUMMARY

The discussion focuses on converting dissolved organic carbon (DOC) measurements from microMolar (uM) to parts per million (ppm). The conversion relies on the molecular weight (MW) of carbon, which is typically 12 grams/mole. Participants highlight that DOC in seawater often has a molecular weight distribution, complicating the conversion. The formula for conversion is established as ppm = MW × uM C, with the understanding that for water, 1 L is approximately 1000 grams.

PREREQUISITES
  • Understanding of dissolved organic carbon (DOC) measurements
  • Knowledge of molecular weight (MW) calculations
  • Familiarity with parts per million (ppm) and microMolar (uM) units
  • Basic principles of chemical conversions and density of solutions
NEXT STEPS
  • Research the molecular weight distribution of organic compounds in seawater
  • Learn about the methods for measuring total organic carbon (TOC) and dissolved organic carbon (DOC)
  • Investigate the effects of temperature and catalysts on DOC measurements
  • Explore the implications of system blanks in DOC analysis
USEFUL FOR

Researchers, chemists, and environmental scientists involved in marine chemistry, particularly those measuring and analyzing dissolved organic carbon in seawater.

Bacat
Messages
149
Reaction score
1
In a lot of the scientific literature, dissolved organic carbon (DOC) is given in microMolar units of carbon. Modern instruments give DOC in parts per million (ppm). I'm trying to figure out how to convert uM to ppm.

Since uM is dependent on the molecular weight, I already have a problem. DOC is actually a distribution of dissolved compounds so there is no single molecular weight. I do know that approximately 65% of the DOC in seawater is <1000 Daltons, but what is an appropriate value to use for molecular weight in this case?

Values for DOC in seawater range, but blanks are often reported around 25-30 uM C. Blanks are the measurement of DOC on a sample that has no dissolved carbon in it, so it represents the contribution from the measurement method. I'm trying to convert this value into ppm so I can compare it to a modern system blank which is reported in ppm.

Once I decide on a molecular weight to use, what is the actual calculation to convert from uM to ppm? Is this correct?

ppm = MW \times \mu M \;C

where ppm is parts per million (mass), uM C is microMolar carbon, and MW is molecular weight in grams/mole.

Any help is much appreciated.
 
Chemistry news on Phys.org
Bacat said:
In a lot of the scientific literature, dissolved organic carbon (DOC) is given in microMolar units of carbon. Modern instruments give DOC in parts per million (ppm). I'm trying to figure out how to convert uM to ppm.

Since uM is dependent on the molecular weight, I already have a problem. DOC is actually a distribution of dissolved compounds so there is no single molecular weight. I do know that approximately 65% of the DOC in seawater is <1000 Daltons, but what is an appropriate value to use for molecular weight in this case?

In DOC measurements, the CO2 resulting from either an oxidation or combustion is measured and reported. What molecular weight do you think is important in this case?

Values for DOC in seawater range, but blanks are often reported around 25-30 uM C. Blanks are the measurement of DOC on a sample that has no dissolved carbon in it, so it represents the contribution from the measurement method. I'm trying to convert this value into ppm so I can compare it to a modern system blank which is reported in ppm.

Once I decide on a molecular weight to use, what is the actual calculation to convert from uM to ppm? Is this correct?

ppm = MW \times \mu M \;C

where ppm is parts per million (mass), uM C is microMolar carbon, and MW is molecular weight in grams/mole.

Any help is much appreciated.

Generally, ppm and \mu mol are equivalent. Remember that DOC measures CO2 obtained via either combustion or oxidation. Don't worry yourself about the MW of the particular organic species responsible for that CO2. Knowing this, can you hypothesize about the reason for a blank seawater sample having a 25-30 \mu M value?
 
I believe uM only equals ppm if the molecular weight equals the density of the solution (water, for example, would be about 1000, or 1025 for seawater, kg/m^3). Am I missing something?

Measuring DOC:

In the literature, CO2 evolves from combustion (high temperature with a platinum catalyst) or oxidation (via persulfate at 100C). But this is really non-purgible organic carbon (NPOC). The purgable organic carbon is purged before the oxidation step, via acidification, and measured. The total organic carbon (TOC) is calculated from the total carbon (TC) by subtracting the inorganic carbon (IC).

TOC = TC - IC

If the sample is filtered to a known pore size, then the TOC is called DOC (dissolved organic carbon). This size is somewhat arbitrary, but <= 45 um particles in solution is commonly used.

Blank System

The 25-30 uM C in the system blank comes from a variety of sources.

Most DI water and distilled water has a small amount of carbon in it (this is attributed to volatiles from the lab atmosphere dissolving into the water), on the order of about 10-15 uM C, or even higher (according to Peltzer and Brewer, 1993 Marine Chemistry).

The instrument itself also contributes to the system blank, though these mechanisms are less well understood. It is thought the type of catalyst of the high temperature combustion apparatus contributes to the system blank, but also issues with sample injection volumes, heating of a sample within the injection syringe, and so forth all contribute somewhat (ibid). I'm afraid I'm still in somewhat of a quandry, though I thank you for your response.
 
I think I understand what I was missing now.

When I have a micromole of carbon, I am already defining a molecular weight of 12 grams/mole.

\mu M\;C = \frac{10^{-6}\;moles\;C}{1\;L\;H_{2}O} = \frac{10^{-6}\;moles\times \;12g/mol}{10^{6}g\;H_{2}O}=\frac{12g \times 10^{-6}}{10^{6}g\;H_2O}=ppm

Therefore,

ppm=\mu M \times MW \times 10^{-6}\; if density of solution is 1000 kg/m^3 (water).

Is this correct?

But then I only get a value of .0003 for ppm from 25uM C...which seems much too low to me.
 
Arrrgh! I should have said that \mu mol per mol is ppm! Alternatively, you could use milligrams per liter as ppm.
 
Bacat said:
I think I understand what I was missing now.

When I have a micromole of carbon, I am already defining a molecular weight of 12 grams/mole.

\mu M\;C = \frac{10^{-6}\;moles\;C}{1\;L\;H_{2}O} = \frac{10^{-6}\;moles\times \;12g/mol}{10^{6}g\;H_{2}O}=\frac{12g \times 10^{-6}}{10^{6}g\;H_2O}=ppm

Therefore,

ppm=\mu M \times MW \times 10^{-6}\; if density of solution is 1000 kg/m^3 (water).

Is this correct?

But then I only get a value of .0003 for ppm from 25uM C...which seems much too low to me.

************
Bacat, I think you have everything right except, I got 1 L = 10^3 g not 10^6 g
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
7K
Replies
9
Views
8K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 1 ·
Replies
1
Views
9K
Replies
12
Views
4K
Replies
17
Views
64K
  • · Replies 1 ·
Replies
1
Views
8K
  • · Replies 89 ·
3
Replies
89
Views
38K
  • · Replies 4 ·
Replies
4
Views
11K
  • · Replies 9 ·
Replies
9
Views
15K