gnome
- 1,031
- 1
Will this method always convert a CNF formula to an equivalent DNF formula:
1. negate the ENTIRE formula
2. negate each literal
3. simplify using DeMorgan's laws
For example, given:
<br /> \begin{equation}<br /> \begin{split}<br /> A:&\quad(p \vee q) \wedge (q \vee r ) \wedge (p \vee r )\notag \\<br /> &\quad\overline{(\overline p \vee \overline q) \wedge (\overline q \vee \overline r) \wedge (\overline p \vee \overline r )}\notag \\<br /> &\quad\overline{(\overline p \vee \overline q)} \vee \overline{(\overline q \vee \overline r)} \vee \overline{(\overline p \vee \overline r )}\notag \\<br /> B:&\quad(p \wedge q) \vee (q \wedge r ) \vee (p \wedge r )\notag \\<br /> \end{split}<br /> \end{equation}<br />
A truth table shows that A and B are equivalent. But is this valid for ANY formula?
1. negate the ENTIRE formula
2. negate each literal
3. simplify using DeMorgan's laws
For example, given:
<br /> \begin{equation}<br /> \begin{split}<br /> A:&\quad(p \vee q) \wedge (q \vee r ) \wedge (p \vee r )\notag \\<br /> &\quad\overline{(\overline p \vee \overline q) \wedge (\overline q \vee \overline r) \wedge (\overline p \vee \overline r )}\notag \\<br /> &\quad\overline{(\overline p \vee \overline q)} \vee \overline{(\overline q \vee \overline r)} \vee \overline{(\overline p \vee \overline r )}\notag \\<br /> B:&\quad(p \wedge q) \vee (q \wedge r ) \vee (p \wedge r )\notag \\<br /> \end{split}<br /> \end{equation}<br />
A truth table shows that A and B are equivalent. But is this valid for ANY formula?