Converting from sin to cos appropriately with phasors

  • Thread starter Thread starter wellmoisturizedfrog
  • Start date Start date
  • Tags Tags
    Cos Phasors Sin
AI Thread Summary
The discussion centers on the confusion regarding the appropriate use of phase shifts when converting between sine and cosine functions in phasor analysis. It highlights that adding pi/2 to a sine function results in a cosine function, while subtracting pi/2 leads to a negative cosine function, effectively inverting the signal. The original poster seeks clarification on when to use each phase shift, as their professor suggests there are specific contexts for each. The conversation emphasizes the importance of understanding the phase relationship in the complex domain and encourages providing detailed problems for better assistance. Overall, clarity on phase shifts is crucial for accurate phasor representation in transmission line problems.
wellmoisturizedfrog
Messages
3
Reaction score
1
TL;DR Summary
Difficulty understanding when to add pi/2 vs when to subtract pi/2.
My transmissions line class often features problems where the voltage is expressed as a sin, not a cos. Obviously a phase shift of pi/2 is sufficient to convert between the two. However, I have trouble understanding when adding pi/2 is appropriate as opposed to subtracting pi/2. As per my understanding, both should be sufficient to achieve the desired conversion, but my professor says otherwise. While I understand that the angle should reflect the position of the phasor in the complex domain, I still feel as though I am missing something. Could anyone offer a concrete clarification of this matter?
 
Engineering news on Phys.org
Can you be more specific? Note that:
$$\sin(x +\frac{\pi}2) = \cos(x)$$
 
  • Like
Likes sophiecentaur
You might get better help if you post an actual problem, with full details, and ask that question. For any homework-type problem, you need to show as much of your own work as possible. There is a specific format for homework-type problems.
 
wellmoisturizedfrog said:
I still feel as though I am missing something. Could anyone offer a concrete clarification of this matter?
##sin(\Theta - \frac{\pi}{2}) = -cos(\Theta)##
##sin(\Theta + \frac{\pi}{2}) = cos(\Theta)##
etc.

Can you explain a bit more about what you are unsure of?
 
wellmoisturizedfrog said:
TL;DR Summary: Difficulty understanding when to add pi/2 vs when to subtract pi/2.

However, I have trouble understanding when adding pi/2 is appropriate as opposed to subtracting pi/2. As per my understanding, both should be sufficient to achieve the desired conversion, but my professor says otherwise.
One will convert sin() to cos(), the other will do the same, but will invert the signal, by the net phase shift of pi.
 
wellmoisturizedfrog said:
TL;DR Summary: Difficulty understanding when to add pi/2 vs when to subtract pi/2.

but my professor says otherwise.
I wonder if he really said that or if you mis- interpreted him (i.e. just in one particular example). The 'timing of events (phases) can sometimes be very relevant but not always.
 
Thread 'Weird near-field phenomenon I get in my EM simulation'
I recently made a basic simulation of wire antennas and I am not sure if the near field in my simulation is modeled correctly. One of the things that worry me is the fact that sometimes I see in my simulation "movements" in the near field that seems to be faster than the speed of wave propagation I defined (the speed of light in the simulation). Specifically I see "nodes" of low amplitude in the E field that are quickly "emitted" from the antenna and then slow down as they approach the far...
Hello dear reader, a brief introduction: Some 4 years ago someone started developing health related issues, apparently due to exposure to RF & ELF related frequencies and/or fields (Magnetic). This is currently becoming known as EHS. (Electromagnetic hypersensitivity is a claimed sensitivity to electromagnetic fields, to which adverse symptoms are attributed.) She experiences a deep burning sensation throughout her entire body, leaving her in pain and exhausted after a pulse has occurred...
Back
Top