Converting from sin to cos appropriately with phasors

  • Thread starter Thread starter wellmoisturizedfrog
  • Start date Start date
  • Tags Tags
    Cos Phasors Sin
Click For Summary
The discussion centers on the confusion regarding the appropriate use of phase shifts when converting between sine and cosine functions in phasor analysis. It highlights that adding pi/2 to a sine function results in a cosine function, while subtracting pi/2 leads to a negative cosine function, effectively inverting the signal. The original poster seeks clarification on when to use each phase shift, as their professor suggests there are specific contexts for each. The conversation emphasizes the importance of understanding the phase relationship in the complex domain and encourages providing detailed problems for better assistance. Overall, clarity on phase shifts is crucial for accurate phasor representation in transmission line problems.
wellmoisturizedfrog
Messages
3
Reaction score
1
TL;DR
Difficulty understanding when to add pi/2 vs when to subtract pi/2.
My transmissions line class often features problems where the voltage is expressed as a sin, not a cos. Obviously a phase shift of pi/2 is sufficient to convert between the two. However, I have trouble understanding when adding pi/2 is appropriate as opposed to subtracting pi/2. As per my understanding, both should be sufficient to achieve the desired conversion, but my professor says otherwise. While I understand that the angle should reflect the position of the phasor in the complex domain, I still feel as though I am missing something. Could anyone offer a concrete clarification of this matter?
 
Engineering news on Phys.org
Can you be more specific? Note that:
$$\sin(x +\frac{\pi}2) = \cos(x)$$
 
  • Like
Likes sophiecentaur
You might get better help if you post an actual problem, with full details, and ask that question. For any homework-type problem, you need to show as much of your own work as possible. There is a specific format for homework-type problems.
 
wellmoisturizedfrog said:
I still feel as though I am missing something. Could anyone offer a concrete clarification of this matter?
##sin(\Theta - \frac{\pi}{2}) = -cos(\Theta)##
##sin(\Theta + \frac{\pi}{2}) = cos(\Theta)##
etc.

Can you explain a bit more about what you are unsure of?
 
wellmoisturizedfrog said:
TL;DR Summary: Difficulty understanding when to add pi/2 vs when to subtract pi/2.

However, I have trouble understanding when adding pi/2 is appropriate as opposed to subtracting pi/2. As per my understanding, both should be sufficient to achieve the desired conversion, but my professor says otherwise.
One will convert sin() to cos(), the other will do the same, but will invert the signal, by the net phase shift of pi.
 
wellmoisturizedfrog said:
TL;DR Summary: Difficulty understanding when to add pi/2 vs when to subtract pi/2.

but my professor says otherwise.
I wonder if he really said that or if you mis- interpreted him (i.e. just in one particular example). The 'timing of events (phases) can sometimes be very relevant but not always.
 
Hello! I want to generate an RF magnetic field at variable frequencies (from 1 to 20 MHz) using this amplifier: https://www.minicircuits.com/WebStore/dashboard.html?model=LZY-22%2B, by passing current through a loop of current (assume the inductive resistance is negligible). How should I proceed in practice? Can i directly connect the loop to the RF amplifier? Should I add a 50 Ohm in series? Thank you!