Sinusoidal steady state analysis using Laplace transform

  • #1
Wrichik Basu
Science Advisor
Insights Author
Gold Member
2,116
2,691
Homework Statement
Find ##i_x(t)## in the given circuit at the steady state.
Relevant Equations
Laplace transforms for circuit elements. $$\begin{align}
t\mathrm{-domain} &\rightarrow s\mathrm{-domain}\\
R &\rightarrow R \\
L &\rightarrow sL \\[0.9em]
C &\rightarrow \dfrac{1}{sC}\\[0.9em]
\cos \omega t &\rightarrow \dfrac{s}{s^2 + \omega^2} \\[0.9em]
\sin \omega t &\rightarrow \dfrac{\omega}{s^2 + \omega^2}
\end{align}$$
##\require{physics}##The given circuit is this:

1695896537667.png

The question is taken from this video. The Professor has solved it using Phasor analysis, the final solution being $$\begin{equation}
i_x(t) = 7.59 \sin \qty( 4t + 108.4^\circ )~\mathrm{amps}.
\end{equation}$$My aim, however, is to use Laplace transform to reproduce this solution.

Step 1 is to transform all the circuit elements from the time domain to the frequency domain. The transformed circuit looks like:

1695897060600.png

At node A,$$\begin{align}
&\phantom{implies} \dfrac{\dfrac{20 s}{s^2 + 16} - V_A(s)}{10} - I_x(s) - \dfrac{V_A - V_B}{s} = 0 \nonumber \\[0.8em]
&\implies \dfrac{2s}{s^2 + 16} - \dfrac{V_A}{10} - \dfrac{V_A}{10/s} - \dfrac{V_A - V_B}{s} = 0.\label{eqn1}
\end{align}$$
At node B,$$\begin{align}
\dfrac{V_A - V_B}{s} + 2\dfrac{V_A}{10/s} - \dfrac{V_B}{s/2} = 0.\label{eqn2}
\end{align}$$
Solving equations##~\eqref{eqn1}## and ##\eqref{eqn2}## yield $$\begin{align}
V_A(s) &= \dfrac{60 s^2}{\qty( s^2 + 16 ) \qty( s^2 + 3s + 2)} \\[0.8em]
\implies I_x(s) &= \dfrac{6s^3}{\qty( s^2 + 16 ) \qty( s^2 + 3s + 2)}.
\end{align}$$
Time to take the inverse Laplace transform. $$\begin{align}
I_x(s) &= \dfrac{6s^3}{\qty( s^2 + 16 ) \qty( s^2 + 3s + 20)} \nonumber \\[1em]
&= \dfrac{\dfrac{42}{5}s + 36}{s^2 + 3s + 20} - \dfrac{\dfrac{12}{5}s + \dfrac{144}{5}}{s^2 + 16} \nonumber \\[1em]
&= \dfrac{\dfrac{42}{5}\qty( s + 1.5 )}{\qty( s + 1.5 )^2 + \dfrac{71}{4}}
+ \dfrac{234}{5\sqrt{71}} \dfrac{\sqrt{71}/2}{\qty( s + 1.5 )^2 + \dfrac{71}{4}} - \dfrac{12}{5} \qty[ \dfrac{s}{s^2 + 16} + 3 \dfrac{4}{s^2 + 16} ] \nonumber\\[1em]
\implies i_x (t) &= \dfrac{42}{5} \exp^{-1.5t} \qty[ \cos \qty( \dfrac{\sqrt{71}}{2}t ) + \dfrac{39 \sqrt{71}}{497} \sin \qty( \dfrac{\sqrt{71}}{2}t ) ] - \dfrac{12}{5} \qty[ \cos (4t) + 3 \sin (4t) ].
\end{align}$$
At steady state, i.e. when ##t \rightarrow \infty,## the exponential part vanishes, so I am left with only $$\begin{equation}
i_x (t) = - \dfrac{12}{5} \qty[ \cos (4t) + 3 \sin (4t) ]~\mathrm{amps}. \label{eqn:ixt_final}
\end{equation}$$

I am not sure how to proceed from here to arrive at the same equation that was derived in the video.

If I plot the two values, I get

1695913660053.png

which is just a phase difference. I am not sure where I went wrong. Any leads will be helpful.
 
Last edited:
Physics news on Phys.org
  • #2
Since your source voltage is of the form ##20 \cos(4 t)##, I believe that your steady state answer should also be in that form:
$$ i_x(t) = 7.59 \cos \qty( 4t + 108.4^\circ )~\mathrm{amps}$$
So I think that your professor mistook the sin for cos. This, will I believe solve your phase difference issues between the phasor approach and the Laplace approach.
 
  • Like
  • Love
Likes berkeman and Wrichik Basu
  • #3
gneill said:
Since your source voltage is of the form ##20 \cos(4 t)##, I believe that your steady state answer should also be in that form:
$$ i_x(t) = 7.59 \cos \qty( 4t + 108.4^\circ )~\mathrm{amps}$$
So I think that your professor mistook the sin for cos. This, will I believe solve your phase difference issues between the phasor approach and the Laplace approach.
That sure does solve the issue. Thank you!
 
  • Like
Likes berkeman
  • #4
You're very welcome!
 

1. What is sinusoidal steady state analysis using Laplace transform?

Sinusoidal steady state analysis using Laplace transform is a mathematical technique used to analyze the behavior of an electrical circuit in the frequency domain. It involves converting the time-domain circuit equations into complex frequency-domain equations using the Laplace transform, which allows for easier analysis and calculation of circuit parameters.

2. Why is Laplace transform used in sinusoidal steady state analysis?

Laplace transform is used in sinusoidal steady state analysis because it simplifies the analysis of complex circuits with multiple components and sources. It also allows for the use of phasor representation, which makes it easier to calculate circuit parameters such as impedance, current, and voltage.

3. What are the advantages of using sinusoidal steady state analysis?

The main advantage of using sinusoidal steady state analysis is that it allows for the prediction of the behavior of a circuit under steady state conditions, without having to solve complex differential equations. It also provides a more efficient and accurate way to calculate circuit parameters compared to traditional methods.

4. What are the limitations of sinusoidal steady state analysis?

One limitation of sinusoidal steady state analysis is that it only applies to circuits under steady state conditions, meaning that it cannot predict the behavior of circuits during transients or when the circuit is first turned on. Additionally, it assumes that all circuit components are linear, which may not always be the case in real-world circuits.

5. What are some practical applications of sinusoidal steady state analysis?

Sinusoidal steady state analysis is commonly used in the design and analysis of electrical circuits, such as in power systems, communication systems, and electronic devices. It is also used in various engineering fields, such as control systems, signal processing, and circuit design.

Similar threads

  • Atomic and Condensed Matter
Replies
4
Views
2K
Replies
2
Views
4K
Replies
1
Views
2K
  • Classical Physics
Replies
3
Views
1K
  • Special and General Relativity
Replies
9
Views
1K
  • Special and General Relativity
Replies
1
Views
852
  • Engineering and Comp Sci Homework Help
Replies
4
Views
1K
Replies
1
Views
1K
  • Engineering and Comp Sci Homework Help
Replies
10
Views
2K
  • Introductory Physics Homework Help
Replies
7
Views
1K
Back
Top