Converting Second Order ODE to Hypergeometric Function

Click For Summary
SUMMARY

Any linear second-order ordinary differential equation (ODE) with at most three regular singular points can be transformed into a hypergeometric function. The discussion centers on the transformation of a specific ODE involving constants E, m, v, and k_y into hypergeometric form. The singular points identified are at x=0, x=-E/m, and x=∞, with the latter being a non-regular singular point. The transformation requires matching these singular points to the standard hypergeometric equation, which has singular points at z=0, z=1, and z=∞.

PREREQUISITES
  • Understanding of linear second-order ordinary differential equations (ODEs)
  • Familiarity with hypergeometric functions and their properties
  • Knowledge of singular points in differential equations
  • Basic skills in variable transformations in mathematical equations
NEXT STEPS
  • Study the derivation and properties of hypergeometric functions
  • Learn about regular and irregular singular points in differential equations
  • Explore variable transformations and their applications in solving ODEs
  • Investigate specific examples of converting ODEs to hypergeometric form
USEFUL FOR

Mathematicians, physicists, and students studying differential equations, particularly those interested in the application of hypergeometric functions in solving linear second-order ODEs.

thatboi
Messages
130
Reaction score
20
I believe it is the case that any linear second order ode with at most 3 regular singular points can be transformed into a hypergeometric function. I am trying to solve the following equation for a(x):
1656684197353.png

where E, m, v, k_{y} are all constants and I believe turning it into hypergeometric form will help me solve it. Any help would be appreciated!
 
Physics news on Phys.org
Have you located all the singular points? Just a quick look, ##x=0## and ##x= -\frac{E}{m}## look like candidates. What about at ##x=\infty##? It would really help to reduce and simplify the constants.
 
Paul Colby said:
Have you located all the singular points? Just a quick look, ##x=0## and ##x= -\frac{E}{m}## look like candidates. What about at ##x=\infty##? It would really help to reduce and simplify the constants.
It appears that ##x=\infty## is a singular point but it is not regular so I am not sure if we can use it here. Nevertheless it should still be possible to turn it into hypergeometric form right?
Also I am not sure what you mean by reducing and simplifying the constants here, I do not see anything that can be further cleaned up.
 
Okay, so the hypergeometric equation is,

##
z(1-z)\frac{d^2w}{dz^2} +[c-(a+b+1)z]\frac{dw}{dz} - abw = 0
##

which has three regular singular points in the extended ##z##-plane. These are at ##z=0,1,\infty##. For starters you should transform your equations singular points to the same places. Two out out of three are already where they need to be. The last may be done by the change of variable,

##
z = -\frac{m}{E}x
##

if I've done things correctly. After this is done and you've multiplied through by the ##z(1-z)## factor, if you get the hypergeometric equation, you're done. If not, then your ##a(x)## isn't a hypergeometric function. That said, it may still be related to one with the right transformations.
 
Right, but for my equation, x = ##\infty## isn't a regular singular point so are we still able to match it to that equation?
Paul Colby said:
Okay, so the hypergeometric equation is,

##
z(1-z)\frac{d^2w}{dz^2} +[c-(a+b+1)z]\frac{dw}{dz} - abw = 0
##

which has three regular singular points in the extended ##z##-plane. These are at ##z=0,1,\infty##. For starters you should transform your equations singular points to the same places. Two out out of three are already where they need to be. The last may be done by the change of variable,

##
z = -\frac{m}{E}x
##

if I've done things correctly. After this is done and you've multiplied through by the ##z(1-z)## factor, if you get the hypergeometric equation, you're done. If not, then your ##a(x)## isn't a hypergeometric function. That said, it may still be related to one with the right transformations.
 
I don't think it's likely. I'd have to do the work to find out. This is your question. If you transform the equation as suggested, what's the result?
 
Paul Colby said:
I don't think it's likely. I'd have to do the work to find out. This is your question. If you transform the equation as suggested, what's the result?
I get
##\begin{align}
&z(1-z)\frac{d^2a}{dz^2}+(z-2)\frac{da}{dz} + \frac{1}{4m^2v^2z}(4E^2m^2+m^2v^2-4E^2m^2z+4Ek_{y}mv^2z+m^2v^2z\nonumber \\
&-4E^2m^2z^2-4E^2k_{y}^2v^2z^2+4E^2m^2z^3+4E^2k_{y}^2v^2z^3)a(z) = 0 \nonumber
\end{align}
##
which I guess is not the form we wanted.
 
No, this is clearly not the hypergeometric equation. If I assume ##E## is energy, ##m## as mass, ##v## as velocity, the units between terms seems off. Oh, I'm also assuming this is an equation arising from a physics problem. I'd recheck your work.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 28 ·
Replies
28
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K