Convolution vs Cross-correlation

Click For Summary
Convolution involves placing a mask/filter at every point in a signal and computing the sum of the inner products, while cross-correlation slides the mask across the signal and calculates the inner product area by area. The integral formulas for both operations are similar, but convolution requires rotating the mask by 180 degrees, making the concepts distinct. In deep learning, particularly in convolutional neural networks (CNNs), cross-correlation is primarily used instead of convolution. Additionally, if the filter is symmetric, both operations yield the same result, but their purposes differ: convolution processes signals for effects like blurring, while cross-correlation assesses similarity. Understanding these differences is crucial for applications in image processing and neural networks.
fog37
Messages
1,566
Reaction score
108
TL;DR
understand the difference between convolution and cross-correlation results
Hello,
Convolution is essentially superposition. Conceptually, a copy of the same mask/filter is essentially placed at every point in the signal (1D, 2D, ect.). Once all these convolution masks are in place, we just compute the sum and get the convolved signal. The integral formula for convolution, which implies rotating by 180 degrees the mask, is less intuitive.

Let's now talk about cross-correlation. In this case, we don't place the mask at EVERY point in the input signal but simply slide the mask around and calculate the inner product with the overlapped area and move on to the next input signal area....The correlation map looks therefore very different from a convolution operation. The integral formula for cross- correlation seems very similar (the mask is not rotated) to the convolution integral but the concept is quite different.

Concetually, convolution places the mask everywhere in the input signal, does the inner product, and sum everything up. Cross-correlation simply perform the inner product area by area...

What actually occurs in deep learning and CNN (convolutional neural networks) is really cross-correlation and not convolution, correct?
 
  • Like
Likes Philip Koeck
Computer science news on Phys.org
fog37 said:
TL;DR Summary: understand the difference between convolution and cross-correlation results

Hello,
Convolution is essentially superposition. Conceptually, a copy of the same mask/filter is essentially placed at every point in the signal (1D, 2D, ect.). Once all these convolution masks are in place, we just compute the sum and get the convolved signal. The integral formula for convolution, which implies rotating by 180 degrees the mask, is less intuitive.

Let's now talk about cross-correlation. In this case, we don't place the mask at EVERY point in the input signal but simply slide the mask around and calculate the inner product with the overlapped area and move on to the next input signal area....The correlation map looks therefore very different from a convolution operation. The integral formula for cross- correlation seems very similar (the mask is not rotated) to the convolution integral but the concept is quite different.

Concetually, convolution places the mask everywhere in the input signal, does the inner product, and sum everything up. Cross-correlation simply perform the inner product area by area...

What actually occurs in deep learning and CNN (convolutional neural networks) is really cross-correlation and not convolution, correct?
I don't know what CNN does, but in image processing CC is used to compare two functions in n dimensions: How similar are they and in what position to each other do they match best?

Convolution is used to produce a weighted sum of copies of the one function placed in positions (and with the respective weights) given by the other function. Obvioulsy this is quite messy unless the first function is limited in extent and the second function is a sum of delta distributions sufficiently far apart to avoid extensive overlap between the copies.
The minus in the argument makes sure the copies of the first function are correctly oriented.

This doesn't sound right to me or at least I don't understand it:
Concetually, convolution places the mask everywhere in the input signal, does the inner product, and sum everything up. Cross-correlation simply perform the inner product area by area...
 
fog37 said:
TL;DR Summary: understand the difference between convolution and cross-correlation results

Hello,
Convolution is essentially superposition. Conceptually, a copy of the same mask/filter is essentially placed at every point in the signal (1D, 2D, ect.). Once all these convolution masks are in place, we just compute the sum and get the convolved signal. The integral formula for convolution, which implies rotating by 180 degrees the mask, is less intuitive.

Let's now talk about cross-correlation. In this case, we don't place the mask at EVERY point in the input signal but simply slide the mask around and calculate the inner product with the overlapped area and move on to the next input signal area....The correlation map looks therefore very different from a convolution operation. The integral formula for cross- correlation seems very similar (the mask is not rotated) to the convolution integral but the concept is quite different.

Concetually, convolution places the mask everywhere in the input signal, does the inner product, and sum everything up. Cross-correlation simply perform the inner product area by area...

What actually occurs in deep learning and CNN (convolutional neural networks) is really cross-correlation and not convolution, correct?
One more thing I should point out since you talk about masks and filters.
The latter are usually symmetrical. In that case it makes no difference whether you convolute or cross-correlate with them.
 
In both convolution and correlation, the filter and the mask are generally smaller in size than the input signal.
True, if the filter is symmetric, convolution and correlation will give the same result.

But correlation is about finding similarity while convolution is more about processing of the input signal by convolution filter (to blur, enhance, etc.). Convolution is when an input passes through a system. The system's output is determined by the convolution filter, also known as the impulse response of the system/filter....

I was not completely correct in the way I described the mechanics of correlation. Even in the case of correlation, the correlation mask is translated around and its entries multiply the input signal. The only difference between correlation and convolution is really the 180 flip of the mask...
 
  • Like
Likes Philip Koeck
I’ve spent nearly my entire life online, and witnessed AI become integrated into our lives. It’s clear that AI is apart of us now whether we like it or not, unless your a anti tech cabin lover. AI has some form of control over your life. But what I’ve seen very recently is that people are loosing their ingenuity and deciding to use AI. I feel as if it’ll bleed into STEM which is kinda has already and, every idea or thought could become fully reliant on AI. Yeah AI makes life easier but at a...

Similar threads

  • · Replies 2 ·
Replies
2
Views
3K
Replies
21
Views
3K
  • · Replies 43 ·
2
Replies
43
Views
7K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
1
Views
2K
Replies
33
Views
21K
  • · Replies 20 ·
Replies
20
Views
4K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 13 ·
Replies
13
Views
3K