MHB Coprime mod n implies coprime-ish mod n

  • Thread starter Thread starter Swlabr1
  • Start date Start date
Swlabr1
Messages
15
Reaction score
0
Let $a$ and $b$ be two integers such that there exists integers $p$, $q$ with $ap+bq=1\text{ mod }n$. Do there exist integers $a^{\prime}$ $b^{\prime}$, $p^{\prime}$ and $q^{\prime}$ such that, $x^{\prime}=x\text{ mod }n$ for $x\in\{a, b, p, q\}$ and, $$a^{\prime}p^{\prime}+b^{\prime}q^{\prime}=1?$$
 
Physics news on Phys.org
Re: Coprime mod $n$ implies coprime-ish mod $n$

Swlabr said:
Let $a$ and $b$ be two integers such that there exists integers $p$, $q$ with $ap+bq=1\text{ mod }n$. Do there exist integers $a^{\prime}$ $b^{\prime}$, $p^{\prime}$ and $q^{\prime}$ such that, $x^{\prime}=x\text{ mod }n$ for $x\in\{a, b, p, q\}$ and, $$a^{\prime}p^{\prime}+b^{\prime}q^{\prime}=1?$$

If $\gcd (a,b)=1$ then yes.

$ap+bq \equiv 1 \mod n$ means there exist integer $\gamma$ such that $ap + bq+n \gamma =1$ . If $\gcd (a, b)=1$ then $\exists k_1, k_2$ such that

$ak_1+bk_2=\gamma$.

Take $a{'} =a, b{'}=b, p{'}=p+nk_1, q{'}=q+nk_2$

Then $a{'}b{'} +b{'}q{'}=1$

I am not sure what happens when $\gcd (a,b) \neq 1$.

Hope this helps.
 
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Back
Top