His talk was about “macro dark matter,” a dark matter candidate that has received little if no attention. I had only become aware of it briefly before, through
a paper by Starkman together with David Jacobs and Amanda Weltman. Unlike the commonly considered particle dark matter, macro dark matter isn’t composed of single particles, but of macroscopically heavy chunks of matter with masses that are a priori anywhere between a gram and the mass of the Sun.
It is often said that observations indicate dark matter must be made of weakly interacting particles, but that is only true if the matter is thinly dispersed into light, individual particles.
What we really know isn’t that the particles are weakly interacting but that are rarely interacting; you never measure a cross-section without a flux. Dark matter could be rarely interacting because it is weakly interacting. That’s the standard assumption. Or it could be rarely interacting because it is clumped together to tiny and dense blobs that are unlikely to meet each other. That’s macro dark matter.
But what is macro dark matter made of? It might for example be a type of nuclear matter that hasn’t been discovered so far, blobs of quarks and gluons that were created in the early universe and lingered around ever since. These blobs would be incredibly dense; at this density the Great Pyramid of Giza would fit inside a raindrop!
If you think nuclear matter is last-century physics, think again. The phases and properties of nuclear matter are still badly understood and certainly can’t be calculated from first principles even today. . . .
So matter of nuclear density containing some of the heavier quarks is a possibility. But Starkman and his collaborators prefer to not make specific assumptions and keep their search as model-independent as possible. They were simply looking for constraints on this type of dark matter which are summarized in the figure below
On the vertical axis you have the cross-section, on the horizontal axis the mass of the macros. The grey and green diagonal lines are useful references marking atomic and nuclear density. In general the macro could be made up of a mixture, and so they wanted to keep the density a variable to be constrained by experiment. The shaded regions are excluded by various experiments.
To arrive at the experimental constraints one takes into account two properties of the macros that can be inferred from existing data. The one is the total amount of dark matter which we know from a number of observations, for example gravitational lensing and the CMB power spectrum. This means if we look at a particular mass of the macro, we know how many of them there must be. The other property is the macros’ average velocity which can be estimated from the mass and the strength of the gravitational potential that the particles move in. From the mass and the density one gets the size, and together with the velocity one can then estimate how often these things hit each other – or us.
The grey-shaded left upper region is excluded because the stuff would interact too much, causing it to clump too efficiently, which runs into conflict with the observed large scale structures.
The red regions are excluded by gravitational lensing data. These would be the macros that are so heavy they’d result in frequent strong gravitational lensing which hasn’t been observed. These constraints are also the reason why neutron stars, brown dwarfs, and black holes have long been excluded as possible explanations for dark matter. There are two types of lensing constraints from two different lensing methods, and right now there is a gap between them, but it will probably close in the soon future.
The yellow shaded region excludes macros of small mass, which is possible because these would be hitting Earth quite frequently. A macro with mass 10
9g for example would pass through Earth about once per year, the lighter ones more frequently. Searches for such particles are similar to searches for magnetic monopoles. One makes use of natural particle detectors, such as the sediment mica that forms neatly ordered layers in which a passing heavy particle would leave a mark. No such marks have been found, which rules out the lighter macros.
What about that open region in the middle? Could macros hide there? Starkman and his collaborators have some pretty cool ideas how to look for macros in that regime, and that’s what my New Scientist piece with Naomi is about.
Macro dark matter of course leaves many open questions. As long as we don’t really know what it’s made of, we have no knowing whether it can form in sufficient amounts or is stable enough. But its big advantage is that it doesn’t necessarily require us to construe up new particles.