MHB Countable Union of Countable Sets

evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! (Wave)

I am looking at the proposition:

[m] If $(A_n)_{n \in \omega}$ is a sequence of sets and $(f_n)_{n \in \omega}$ is a sequence of functions then:

for all $n \in \omega, f_n: \omega \overset{\text{ surjective }}{\rightarrow} A_n$ then there is a function $f: \omega \overset{\text{ surjective }}{\rightarrow} \bigcup_{n \in \omega} A_n$. [/m]Could you give me an example of such a case?
 
Physics news on Phys.org
This simply says that the union of countably many sets that are at most countable is at most countable.
 
Evgeny.Makarov said:
This simply says that the union of countably many sets that are at most countable is at most countable.

I see... Thanks a lot! (Smile)
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.

Similar threads

Replies
1
Views
2K
Replies
14
Views
3K
Replies
3
Views
5K
Replies
14
Views
2K
Replies
5
Views
2K
Replies
2
Views
3K
Replies
3
Views
2K
Back
Top