MHB Counterfactual Expectation Calculation

Ackbach
Gold Member
MHB
Messages
4,148
Reaction score
93
$\newcommand{\doop}{\operatorname{do}}$
Problem: (This is from Study question 4.3.1 from Causal Inference in Statistics: A Primer, by Pearl, Glymour, and Jewell.) Consider the causal model in the following figure and assume that $U_1$ and $U_2$ are two independent Gaussian variables, each with zero mean and unit variance.

Find the expected salary of workers at skill level $Z=z$ had they received $x$ years of college education. [Hint: Use Theorem 4.3.2, with $e:Z=z,$ and the fact that for any two Gaussian variables, say $X$ and $Z,$ we have $E[X|Z=z]=E[Z]+R_{XZ}(z-E[Z]).$ Use the material in Sections 3.8.2 and 3.8.3 to express all regression coefficients in terms of structural parameters, and show that $$E[Y_x|Z=z]=abx+\frac{bz}{1+a^2}.]$$

View attachment 9643

Here, $X$ is education, $Z$ is skill, and $Y$ is salary. The accompanying SEM is
\begin{align*}
X&=U_1\\
Z&=aX+U_2\\
Y&=bZ.
\end{align*}

My Work So Far:
We are called on to compute $E[Y_x|Z=z].$
Now Theorem 4.3.2 states: Let $\tau$ be the slope of the total effect of $X$ on $Y,$
$$\tau=E[Y|\doop(x+1)]-E[Y|\doop(x)] $$
then, for any evidence $Z=e,$ we have
$$E[Y_{X=x}|Z=e]=E[Y|Z=e]+\tau(x-E[X|Z=e]).$$
For our problem, with $e:Z=z,$ we have
$$E[Y_{X=x}|Z=z]=E[Y|Z=z]+\tau(x-E[X|Z=z]).$$
Not sure where to go from there.

Now I know that this is a non-deterministic counterfactual problem, which means the process should be:

1. Abduction: Update $P(U)$ by the evidence to obtain $P(U|E=e).$
2. Action: Modify the model, $M,$ by removing the structural equations for the variables in $X$ and replacing them with the appropriate functions $X=x,$ to obtain the modified model, $M_x.$
3. Prediction: Use the modified model, $M_x,$ and the updated probabilities over the $U$ variables, $P(U|E=e),$ to compute the expectation of $Y,$ the consequence of the counterfactual.

So, for abduction, am I right in thinking that the only evidence we're using right now is $Z?$ In that case, we want to determine the $U_1$ and $U_2$ that correspond to $Z=z.$ We have the two equations
\begin{align*}
X&=U_1\\
z&=aX+U_2,
\end{align*}
or
\begin{align*}
X&=U_1\\
z-aX&=U_2.
\end{align*}
Without knowing the pre-condition value of $X,$ it's not clear how to continue. How do I continue? I'm also really not understanding the hint. Any thoughts about the hint?

Thanks for your time!

Note: I have cross-posted this at Cross-Validated:

https://stats.stackexchange.com/questions/457740/counterfactual-expectation-calculation
 

Attachments

  • bg4ml.png
    bg4ml.png
    826 bytes · Views: 136
Physics news on Phys.org
I have obtained access to the full solutions manual, after contacting Wiley about it. I will not type up the solution in full, but simply note a few critical pieces of information I was missing in order to answer this question:

1. $E[x|z]=\beta_{xz}\,z,$ because of the model, and the relationship between $x$ and $z.$ Here $\beta_{xz}$ is the regression coefficient, as in $X=\beta_{xz}Z.$
2. Reversing regression coefficients requires knowing the variances: $\beta_{xz}\sigma_z^2=\beta_{zx}\sigma_x^2.$
3. The slope of the total effect, $\tau,$ you can read off the diagram as $\tau=ab.$
4. Variances add like this: if $Z=aX+U_2,$ then $\sigma_z^2=a^2\sigma_x^2+\sigma_{U_2}^2.$

This is sufficient information to obtain the desired result.
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.
Back
Top