Coupled system of 1st order PDEs

  • Thread starter hunt_mat
  • Start date
  • #1
hunt_mat
Homework Helper
1,724
16

Main Question or Discussion Point

I have the following system of first order PDEs
[tex]
\begin{array}{rcl}
\frac{\partial v}{\partial t}+v\frac{\partial v}{\partial x} & = & -\varepsilon\gamma^{-3}(v)E \\
\frac{\partial n}{\partial t}+\frac{\partial}{\partial x}(nv) & = & 0 \\
\frac{\partial E}{\partial t}+E & = & nv
\end{array}
[/tex]
With inital conditions [itex]v(t,0)=\beta_{0},n(0,x)=1,E(x/\beta_{0},x)=0[/itex]. Now it is possible to solve for E explicitly to obtain:
[tex]
E(t,x)=\int_{\frac{x}{\beta_{0}}}^{t}e^{s-t}n(s,x)v(s,x)ds
[/tex]
Now I have decided to solve this system numerically using a predictor corrector method for v and n and the solution above to find E. Now I have got the predictor-corrector to work (such that it gives no errors when I run it) but I am having a little trouble coding up the integral for E, can anyone suggest something? I am working in MATLAB.

Cheers

Mat
 

Answers and Replies

Related Threads for: Coupled system of 1st order PDEs

Replies
4
Views
2K
  • Last Post
Replies
0
Views
3K
  • Last Post
Replies
1
Views
2K
  • Last Post
Replies
3
Views
6K
  • Last Post
Replies
0
Views
1K
  • Last Post
Replies
1
Views
1K
Replies
1
Views
682
Top