- #1
Shackleford
- 1,656
- 2
This is from Evans page 50. I'm sure it's something simple, but I don't follow the change from $$ \frac{\partial}{\partial t} \quad \text{to} \quad -\frac{\partial}{\partial s}$$
and from $$ \Delta_x \quad \text{to} \quad \Delta_y$$.
\begin{gather*}
\begin{split}
u_t(x,t) - \Delta u(x,t) & = \int_{0}^{t} \int_{\mathbb{R}^n}^{} \Phi(y,s) [(\frac{\partial}{\partial t}-\Delta_x)f(x-y,t-s)] \; dyds \\
& + \int_{\mathbb{R}^n}^{} \Phi(y,t) f(x-y,0) \; dy \\
& = \int_{\varepsilon}^{t} \int_{\mathbb{R}^n}^{} \Phi(y,s) [(-\frac{\partial}{\partial s}-\Delta_y)f(x-y,t-s)] \; dyds \\
& + \int_{0}^{\varepsilon} \int_{\mathbb{R}^n}^{} \Phi(y,s) [(-\frac{\partial}{\partial s}-\Delta_y)f(x-y,t-s)] \; dyds \\
& + \int_{\mathbb{R}^n}^{} \Phi(y,t) f(x-y,0) \; dy
\end{split}
\end{gather*}
and from $$ \Delta_x \quad \text{to} \quad \Delta_y$$.
\begin{gather*}
\begin{split}
u_t(x,t) - \Delta u(x,t) & = \int_{0}^{t} \int_{\mathbb{R}^n}^{} \Phi(y,s) [(\frac{\partial}{\partial t}-\Delta_x)f(x-y,t-s)] \; dyds \\
& + \int_{\mathbb{R}^n}^{} \Phi(y,t) f(x-y,0) \; dy \\
& = \int_{\varepsilon}^{t} \int_{\mathbb{R}^n}^{} \Phi(y,s) [(-\frac{\partial}{\partial s}-\Delta_y)f(x-y,t-s)] \; dyds \\
& + \int_{0}^{\varepsilon} \int_{\mathbb{R}^n}^{} \Phi(y,s) [(-\frac{\partial}{\partial s}-\Delta_y)f(x-y,t-s)] \; dyds \\
& + \int_{\mathbb{R}^n}^{} \Phi(y,t) f(x-y,0) \; dy
\end{split}
\end{gather*}