Marcus!(adsbygoogle = window.adsbygoogle || []).push({});

Surely, I’m not the only one reading the links that you provide!

http://arxiv.org/PS_cache/arxiv/pdf/0706/0706.1534v1.pdf [Broken]

Coupling gauge theory to spinfoam 3d quantum gravity

Simone Speziale

June 11, 2007

Note: The Acknowledgments:

The author is particularly grateful to Carlo Rovelli, Laurent Freidel, Hendryk Pfeiffer and John Barrett for many discussions and suggestions.

--------------------

Maybe, everyone only wants to read the simple presentations in my blog.

---------------

Previous papers

http://arxiv.org/PS_cache/gr-qc/pdf/0606/0606074v2.pdf

A semiclassical tetrahedron

Carlo Rovelli and Simone Speziale_

CPT†, CNRS Case 907, Universit´e de la M´editerran´ee, F-13288 Marseille

Perimeter Institute, 31 Caroline St.N, Waterloo, ON-N2L-2Y5, Canada

March 31, 2007

http://arxiv.org/PS_cache/gr-qc/pdf/0611/0611097v1.pdf

Grasping rules and semiclassical limit of the geometry

in the Ponzano–Regge model

Jonathan Hackett and Simone Speziale

17 Nov 2006

---------------

Choosing the double tetra as a spinfoam 3d model is only the beginning of a long journey.

--------------------

Does anyone know if a baby elephant is born head first?

------------

WHAT’S IN THE NUCLEON?

http://arxiv.org/PS_cache/hep-ph/pdf/0306/0306287v1.pdf

QCD Phenomenology

Lectures at the CERN–Dubna School, Pylos, August 2002

Yu.L. Dok****zer

Abstract

The status of QCD phenomena and open problems are reviewed

29 June 2003

-------------------

(Chiral Quark–Soliton Model (CQSM) )

http://arxiv.org/PS_cache/hep-ph/pdf/0608/0608197v1.pdf

Nuclear matter in the chiral quark soliton model with vector mesons

S.Nagai1, N.Sawado, and N.Shiiki1,

(Dated: March 22, 2007)

The idea of investigating dense nuclear matter in the topological soliton models has been developed over decades. It was first applied for the nuclear matter system with the skyrmion centered cubic (CC) crystal by Klebanov [1]. This configuration was studied further by W¨ust, Brown and Jackson to estimate the baryon density and discuss the phase transition between nuclear matter and quark matter [2]. Goldhabor and Manton found a new configuration, body-centered cubic (BCC) of half-skyrmions in a higher density regime [3]. The face centered cubic (FCC) and BCC lattice were studied by Castillejo et al. [4] and the phase transitions between those configurations were investigated by Kugler and Shtrikman [5]. Recently, the idea of using crystallized skyrmions to study nuclear matter was revived by Park, Min, Rho and Vento with the introduction of the Atiyah-Manton multi-soliton ansatz in a unit cell [6].

The chiral quark soliton model (CQSM) can be interpreted as the soliton bag model including not only valence quarks but also the vacuum sea quark polarization effects explicitly [16, 17, 18, 19]. The model provides correct observables of a nucleon such as mass, electromagnetic value, spin carried by quarks, parton distributions and octet, decuplet SU(3) baryon spectra [20, 21].

----------------

The following is a good explanations of the quark sea with the use of instantons

----------------

http://arxiv.org/PS_cache/hep-ph/pdf/0205/0205054v1.pdf [Broken]

INSTANTONS AND BARYON DYNAMICS

DMITRI DIAKONOV

06 may 2002

Instanton fluctuations are characterized by their position in space-time zμ, the spatial size p and orientation in color space O, all in all by 12 collective coordinates.

Note: It should be possible to link the double tetras to 12 instantons.

ref. p.13 from http://arxiv.org/PS_cache/arxiv/pdf/0706/0706.1534v1.pdf [Broken]

The key diagram to evaluate is …. (see paper)

This diagram has 4 x 36 = 144 contributions, coming from all the possible choices of graspings in a given point, times the four points. Each contribution can be evaluated using grasping rules and recoupling theory as in [8]. Because there are only double graspings entering this expression, the evaluation is rather simple and we do not report the details here, but only the asymptotics.

Let us distinguish two types of terms, when the YM grasping is diagonal, namely s3 = t3, and when is not diagonal, namely s3 6= t3. Consider first the diagonal case. For fixed s3 = ij, there are 4 contributions from p = i, and four from p = j. To fix ideas, let us choose s3 = 12 ….

The average size of instantons found in ref. 11 is ¯_ ≈ 0.36 fm and their average separation is ¯R = (N/V )−1 4 ≈ 0.89 fm. Similar results have been obtained by other lattice groups using various techniques. A decade earlier the basic characteristics of the instanton ensemble were obtained analytically from the Feynman variational principle 12,13 and expressed through the only dimensional parameter _ one has in QCD: ¯_ ≈ 0.48/_MS ≃ 0.35 fm, ¯R ≈ 1.35/_MS ≃ 0.95 fm, if one uses _MS = 280MeV as it follows from the DIS data.

Summing up instanton-induced quark interactions in baryons leads to the Chiral Quark–Soliton Model where baryons appear to be bound states of constituent quarks pulled together by the chiral field. The model enables one to compute numerous parton distributions, as well as ‘static’ characteristics of baryons – with no fitting parameters.

Numerous parton distributions have been computed in the CQSM, mainly by the Bochum group. 27,28,29 There have been a number of mysteries from naive quark models’ point of view: the large number of antiquarks already at a low virtuality, the ‘spin crisis’, the large flavor asymmetry of antiquarks, etc.

The CQSM explains all those ‘mysteries’ in a natural way as it incorporates, together with valence quarks bound by the isospin-1 pion field, the negative energy Dirac sea. Furthermore, the CQSM predicts nontrivial phenomena that have not been observed so far: large flavor asymmetry of the polarized antiquarks 29, transversity distributions 30, peculiar shapes of the so-called skewed parton distributions 31 and other phenomena in hard exclusive reactions. 32

Baryon dynamics is rich and far from naive “three quarks” expectations.

-------------------

What is the popularity of the Chiral Quark–Soliton Model (CQSM)?

Has the addition of the INSTANTONS to explain the “quark sea” been received as a positive step?

Has anyone been able to make the connection with the Chiral Quark–Soliton Model (CQSM) and spinfoam or 12 INSTANTON TO THE DOUBLE TETRAS?

---------------------

jal

**Physics Forums - The Fusion of Science and Community**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Coupling gauge theory to spinfoam 3d quantum gravity

Loading...

Similar Threads - Coupling gauge theory | Date |
---|---|

A Meaning of phase transitions in lattice gauge theories | Feb 13, 2018 |

Can we calculate the coupling constants? | Jan 31, 2016 |

SU(3) and dark U(1) coupling to dark matter | Jul 6, 2013 |

EFT & change or coupling constants | May 2, 2013 |

Angular momentum coupling with graviton exchange? | Aug 18, 2012 |

**Physics Forums - The Fusion of Science and Community**