MHB CraxyCat's Yahoo Answers Question

  • Thread starter Thread starter CaptainBlack
  • Start date Start date
AI Thread Summary
The discriminant of the quadratic equation \(kx^2 - 4x + k\) is calculated as \(D = b^2 - 4ac\), resulting in \(D = 16 - 4k^2\). For the equation to have equal roots, the discriminant must equal zero, leading to the equation \(16 - 4k^2 = 0\). Solving this gives the possible values of \(k\) as \(k = \pm 2\). The discussion confirms the correctness of this solution. Thus, the values of \(k\) that allow for equal roots in the quadratic are \(k = 2\) and \(k = -2\).
CaptainBlack
Messages
801
Reaction score
0
CrazyCat's Question:
"Find the discrimnant of \(kx^2 - 4x + k\) in terms of \(k\), hence find possible values of \(k\) given that \(kx^2 -4x + k = 0\) has equal roots."



Answer:
For a quadratic \(ax^2+bx+c\) the discriminant is \(b^2-4ac\) this is the term that appears under the square root sign in the quadratic formula:
\[x=\frac{-b\pm\sqrt{b^2-4ac} }{2a}\]for the solution of \(ax^2+bx+c=0\). The quadratic equation has equal roots precisely when the discriminant is zero.

Now for the problem at hand \(a=k\), \(b=-4\) and \(c=k\) so the discriminant is \(D=b^2-4ac=16-4k^2\), and when \(D=0\) we have \(16-4k^2=0\) which we may solve for \(k\) to find: \(k=\pm2\).

CB

 
Last edited:
Mathematics news on Phys.org
I agree.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top