MHB Cruiser & Destroyer: Finding the Closest Point

  • Thread starter Thread starter markosheehan
  • Start date Start date
  • Tags Tags
    Point
AI Thread Summary
A cruiser is positioned 12 km west of a destroyer, with the cruiser traveling at 30 km/h in a direction 60 degrees north of east, while the destroyer moves at 15 km/h. To determine the optimal direction for the destroyer to minimize the distance to the cruiser, the solution is found to be 120 degrees. The standard method involves calculating the distance as a function of time and direction, but a more straightforward approach reveals the same result. Ultimately, the destroyer must travel at 120 degrees to get as close as possible to the cruiser.
markosheehan
Messages
133
Reaction score
0
a cruiser is 12 km due west of a destroyer . the cruiser is traveling in a direction 60 degrees N of E at 30 km hr^-1 and the destroyer is traveling at 15 km hr^-1. find the direction the destroyer must travel in order to get as close as possible to the cruiser there is complicating way to do this however there is also a easy way and i am trying to find out the easy way to do it.
the answer is 120 degrees .
 
Mathematics news on Phys.org
markosheehan said:
a cruiser is 12 km due west of a destroyer . the cruiser is traveling in a direction 60 degrees N of E at 30 km hr^-1 and the destroyer is traveling at 15 km hr^-1. find the direction the destroyer must travel in order to get as close as possible to the cruiser there is complicating way to do this however there is also a easy way and i am trying to find out the easy way to do it.
the answer is 120 degrees .

Let's see... it usually helps to draw a picture...
\begin{tikzpicture}[scale=0.5,>=stealth]
\def\x{110};
\def\t{0.3};
\node (C) at (0,0) {};
\node (D) at (12,0) {};
\node (C1) at ({30*\t*cos(60)}, {30*\t*sin(60)}) {};
\node (D1) at ({12+15*\t*cos(\x)}, {15*\t*sin(\x)}) {};
\fill (C) circle (0.1) node[below] {C};
\fill (D) circle (0.1) node[below] {D};
\fill (C1) circle (0.1) node[above] {C'};
\fill (D1) circle (0.1) node[above right] {D'};
\draw (D) -- +(3,0);
\draw[->,thick] (C) +(1,0) node[above right] {$60^\circ$} arc (0:60:1);
\draw[->,thick] (D) +(1,0) node[above right] {$x$} arc (0:\x:1);
\draw (C) -- node[below] {12} (D);
\draw[->,ultra thick,blue] (C) -- node[above left] {30t} (C1);
\draw[->,ultra thick,blue] (D) -- node[above right] {15t} (D1);
\draw[->,ultra thick,red] (D1) -- node[above right] {d} (C1);
\end{tikzpicture}

The standard way to solve this, is to write $d^2$ as a function of both $x$ and $t$, and then find the critical point.
That is, set both partial derivatives to zero.
$$d^2=(30t\cos(60^\circ)-(12 + 15t\cos(x)))^2 + (30t\sin(60^\circ)-15t\sin(x))^2 \\ \pd{}t(d^2)=0 \\ \pd{}x(d^2)=0
$$
That's indeed a bit of work.
Wolfram says that the solution is $t=0.4$, $x=120^\circ$, and $d=6$.

\begin{tikzpicture}[scale=0.5,>=stealth]
\def\x{120};
\def\t{0.4};
\node (C) at (0,0) {};
\node (D) at (12,0) {};
\node (C1) at ({30*\t*cos(60)}, {30*\t*sin(60)}) {};
\node (D1) at ({12+15*\t*cos(\x)}, {15*\t*sin(\x)}) {};
\fill (C) circle (0.1) node[below] {C};
\fill (D) circle (0.1) node[below] {D};
\fill (C1) circle (0.1) node[above] {C'};
\fill (D1) circle (0.1) node[above right] {D'};
\draw (D) -- +(3,0);
\draw[->,thick] (C) +(1,0) node[above right] {$60^\circ$} arc (0:60:1);
\draw[->,thick] (D) +(1,0) node[above right] {$x$} arc (0:\x:1);
\draw (C) -- node[below] {12} (D);
\draw[->,ultra thick,blue] (C) -- node[above left] {30t} (C1);
\draw[->,ultra thick,blue] (D) -- node[above right] {15t} (D1);
\draw[->,ultra thick,red] (D1) -- node[above right] {d} (C1);
\end{tikzpicture}

Now here's an interesting observation.
At the minimum the vector $\vec {DD'}$ is parallel to the distance vector $\vec d$.
That makes sense, since as long as there is an angle between them, we can improve the distance by reducing that angle by changing $x$ appropriately.
It means we can eliminate either $x$ or $t$ from the expression for the distance, and then take its derivative and set it to zero.
Still some work though.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Back
Top