MHB CuRio$ty's question at Yahoo Answers regarding a linear homogeneous recursion

Click For Summary
The discussion centers on solving a linear homogeneous recursion defined by A_n = 4A_{n-1} + A_{n-2} with initial conditions A_1 = 3 and A_2 = 2. The next four terms of the sequence are calculated as A_3 = 11, A_4 = 46, A_5 = 195, and A_6 = 826. To find the closed form of the sequence, the roots of the characteristic equation are determined, leading to a general solution involving constants c_1 and c_2. These constants are calculated using the initial conditions, resulting in a complex closed form for A_n. The discussion provides a detailed step-by-step approach to both the recursive calculation and the derivation of the closed form.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Math help please! recursive formula?

consider the sequence defined by the following recursive formula and starting with A^1=3 and A^2=2
A^1=4A^N-1 +A^N-2
A)list the next four terms of the sequence
b) find A^g
NOTE: ALL SUBSCRIPTS ARE SUPPOSE TO BE LOCATED BELOW THE "A"
please show me how this is done. would liketo learn. thanks in advance!

I have posted a link there to this topic so the OP can see my work.
 
Mathematics news on Phys.org
Hello CuRio\$!ty,

We are (presumably) given the linear homogeneous recursion:

$$A_{n}=4A_{n-1}+A_{n-2}$$

where $$A_1=3,\,A_2=2$$

a) List the next four terms of the sequence.

For this we may simply use the recursive algorithm:

$$A_3=4A_2+A_1=4\cdot2+3=11$$

$$A_4=4A_3+A_2=4\cdot11+2=46$$

$$A_5=4A_4+A_3=4\cdot46+11=195$$

$$A_6=4A_5+A_4=4\cdot195+46=826$$

b) Find $A_n$.

To find the closed form, we find the roots of the associated characteristic equation:

$$r^2-4r-1=0$$

The quadratic formula gives us:

$$r=2\pm\sqrt{5}$$

Hence, the close form is:

$$A_n=c_1\left(2+\sqrt{5} \right)^n+c_2\left(2-\sqrt{5} \right)^n$$

Using the initial values, we may determine the parameters $c_i$:

$$A_1=c_1\left(2+\sqrt{5} \right)+c_2\left(2-\sqrt{5} \right)=3$$

$$A_2=c_1\left(2+\sqrt{5} \right)^2+c_2\left(2-\sqrt{5} \right)^2=2$$

These equations may be written:

$$2\left(c_1+c_2 \right)+\sqrt{5}\left(c_1-c_2 \right)=3$$

$$9\left(c_1+c_2 \right)+4\sqrt{5}\left(c_1-c_2 \right)=2$$

Multiplying the first equation by -4 and adding to the second, we obtain:

$$c_1+c_2=-10$$

Multiplying the first equation by 9 and the second by -2 and adding we obtain:

$$c_1-c_2=\frac{23}{\sqrt{5}}$$

Adding together these last two equations, we get:

$$2c_1=\frac{23}{\sqrt{5}}-10\implies c_1=\frac{23}{2\sqrt{5}}-5$$

and so:

$$c_2=-\left(\frac{23}{2\sqrt{5}}+5 \right)$$

Thus, the closed form for the sequence is:

$$A_n=\left(\frac{23}{2\sqrt{5}}-5 \right)\left(2+\sqrt{5} \right)^n-\left(\frac{23}{2\sqrt{5}}+5 \right)\left(2-\sqrt{5} \right)^n$$

$$A_n=\frac{\sqrt{5}}{10}\left(\left(23-10\sqrt{5} \right)\left(2+\sqrt{5} \right)^n-\left(23+10\sqrt{5} \right)\left(2-\sqrt{5} \right)^n \right)$$
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

Replies
4
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K