I'm trying do derive the vorticity equation(adsbygoogle = window.adsbygoogle || []).push({});

[tex]\begin{align}\frac{D\vec\omega}{Dt} &= \frac{\partial \vec \omega}{\partial t} + (\vec V \cdot \vec \nabla) \vec \omega \\

&= (\vec \omega \cdot \vec \nabla) \vec V - \vec \omega (\vec \nabla \cdot \vec V) + \frac{1}{\rho^2}\vec \nabla \rho \times \vec \nabla p + \vec \nabla \times \left( \frac{\vec \nabla \cdot \underline{\underline{\tau}}}{\rho} \right) + \vec \nabla \times \vec B

\end{align}[/tex]

based on the notes give here.

I agree with the result obtained for the LHS of the equation but I am having trouble with one term on the right hand side of the equation:

[tex]+ \frac{1}{\rho^2}\vec \nabla \rho \times \vec \nabla p[/tex]

which as far as I can understand should be the curl of:

[tex]- \frac{1}{\rho} \vec \nabla p[/tex]

Looking up useful vector identities:

[tex]\nabla \times (\psi\mathbf{A}) = \psi\nabla \times \mathbf{A} - \mathbf{A} \times \nabla\psi [/tex]

I don't see how to obtain this term.

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Curl of - \frac{1}{\rho} \vec \nabla p

**Physics Forums | Science Articles, Homework Help, Discussion**