MHB Current Equivalence at a Circuit Node

Click For Summary
The discussion focuses on applying Kirchhoff's Current Law (KCL) to a specific circuit node. It explains that the incoming current through resistor R1 must equal the sum of the outgoing currents through the capacitor, a non-linear resistor, and an inductor. The equation presented, \(\frac{e - v_c}{R_1} = C\frac{dv_c}{dt} + f(v_c) + i_L\), represents this balance of currents. Participants seek clarification on the specific currents and node referenced in the explanation. Understanding these relationships is crucial for analyzing circuit behavior accurately.
Dustinsfl
Messages
2,217
Reaction score
5
Given the circuit below:

4BotojH.png


Why does KCL equate to
\[
\frac{e - v_c}{R_1} = C\frac{dv_c}{dt} + f(v_c) + i_L
\]
 
Mathematics news on Phys.org
dwsmith said:
Given the circuit below:

4BotojH.png


Why does KCL equate to
\[
\frac{e - v_c}{R_1} = C\frac{dv_c}{dt} + f(v_c) + i_L
\]

KCL says that in any node current in equals current out.

In the node at the top, the current through $R_1$ is coming in, which must therefore be equal to the current going out and into the capacitor plus the current through the non-linear resistor plus the current through the coil.
 
I like Serena said:
KCL says that in any node current in equals current out.

In the node at the top, the current through $R_1$ is coming in, which must therefore be equal to the current going out and into the capacitor plus the current through the non-linear resistor plus the current through the coil.

I still don't quite understand. Can you be more specific by node at the top and the currents you mention?
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...

Similar threads

Replies
3
Views
2K
Replies
4
Views
1K
Replies
2
Views
2K
Replies
14
Views
287
Replies
10
Views
492
Replies
7
Views
2K