MHB Current Equivalence at a Circuit Node

Click For Summary
The discussion focuses on applying Kirchhoff's Current Law (KCL) to a specific circuit node. It explains that the incoming current through resistor R1 must equal the sum of the outgoing currents through the capacitor, a non-linear resistor, and an inductor. The equation presented, \(\frac{e - v_c}{R_1} = C\frac{dv_c}{dt} + f(v_c) + i_L\), represents this balance of currents. Participants seek clarification on the specific currents and node referenced in the explanation. Understanding these relationships is crucial for analyzing circuit behavior accurately.
Dustinsfl
Messages
2,217
Reaction score
5
Given the circuit below:

4BotojH.png


Why does KCL equate to
\[
\frac{e - v_c}{R_1} = C\frac{dv_c}{dt} + f(v_c) + i_L
\]
 
Mathematics news on Phys.org
dwsmith said:
Given the circuit below:

4BotojH.png


Why does KCL equate to
\[
\frac{e - v_c}{R_1} = C\frac{dv_c}{dt} + f(v_c) + i_L
\]

KCL says that in any node current in equals current out.

In the node at the top, the current through $R_1$ is coming in, which must therefore be equal to the current going out and into the capacitor plus the current through the non-linear resistor plus the current through the coil.
 
I like Serena said:
KCL says that in any node current in equals current out.

In the node at the top, the current through $R_1$ is coming in, which must therefore be equal to the current going out and into the capacitor plus the current through the non-linear resistor plus the current through the coil.

I still don't quite understand. Can you be more specific by node at the top and the currents you mention?
 
Thread 'erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 14 ·
Replies
14
Views
381
  • · Replies 10 ·
Replies
10
Views
668
Replies
17
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K