- #1

- 125

- 0

## Main Question or Discussion Point

I am just trying to figure out how to make a CW complex for this. For the n-genus orientable manifold (connect sum of n-tori) I feel like a lot of things make sense, fundamental group, CW complex, etc. But in the infinite case, things seem to fall apart. For example, I can not figure out how the fundamental group is a free group. I was hoping to figure this out by first looking at the CW complex of this surface, but I'm not sure I can picture it.

IN a finite case, I just have a single 0 cell (1 vertex), 2n 1-cells, and a single 2 cell. BUt does this hold at the infinite case? If not what's an alternate way to visualize it?

IN a finite case, I just have a single 0 cell (1 vertex), 2n 1-cells, and a single 2 cell. BUt does this hold at the infinite case? If not what's an alternate way to visualize it?