I am just trying to figure out how to make a CW complex for this. For the n-genus orientable manifold (connect sum of n-tori) I feel like a lot of things make sense, fundamental group, CW complex, etc. But in the infinite case, things seem to fall apart. For example, I can not figure out how the fundamental group is a free group. I was hoping to figure this out by first looking at the CW complex of this surface, but I'm not sure I can picture it.(adsbygoogle = window.adsbygoogle || []).push({});

IN a finite case, I just have a single 0 cell (1 vertex), 2n 1-cells, and a single 2 cell. BUt does this hold at the infinite case? If not what's an alternate way to visualize it?

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# CW complex for infinite holed torus? (Surface of infinite genus)

Can you offer guidance or do you also need help?

Draft saved
Draft deleted

Loading...

**Physics Forums | Science Articles, Homework Help, Discussion**